neural-sdk


Nameneural-sdk JSON
Version 0.2.0 PyPI version JSON
download
home_pageNone
SummaryProfessional-grade SDK for algorithmic trading on prediction markets (Beta - Core features stable, advanced modules experimental)
upload_time2025-10-13 19:30:35
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseNone
keywords kalshi prediction-markets trading algorithmic-trading sports-betting event-contracts prediction-api market-data quantitative-finance
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Neural SDK

<div align="center">

[![PyPI version](https://badge.fury.io/py/neural-sdk.svg)](https://badge.fury.io/py/neural-sdk)
[![Python Versions](https://img.shields.io/pypi/pyversions/neural-sdk.svg)](https://pypi.org/project/neural-sdk/)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![GitHub Stars](https://img.shields.io/github/stars/IntelIP/Neural)](https://github.com/IntelIP/Neural)

**Professional-grade SDK for algorithmic trading on prediction markets**

[Documentation](https://neural-sdk.mintlify.app) • [Quick Start](#quick-start) • [Examples](./examples) • [Contributing](./CONTRIBUTING.md)

</div>

---

## ⚡ What is Neural?

Neural SDK is a comprehensive Python framework for building algorithmic trading strategies on prediction markets. It provides everything you need to collect data, develop strategies, backtest performance, and execute trades—all with production-grade reliability.

### 🔐 Real Data Guarantee

All market data comes from **Kalshi's live production API** via RSA-authenticated requests. This is the same infrastructure that powers a $100M+ trading platform—no simulations, no mocks, just real markets on real events.

### ⭐ Key Features

- **🔑 Authentication**: Battle-tested RSA signature implementation for Kalshi API
- **📊 Historical Data**: Collect and analyze real trade data with cursor-based pagination
- **🚀 Real-time Streaming**: REST API and FIX protocol support for live market data
- **🧠 Strategy Framework**: Pre-built strategies (mean reversion, momentum, arbitrage)
- **⚖️ Risk Management**: Kelly Criterion, position sizing, stop-loss automation
- **🔬 Backtesting Engine**: Test strategies on historical data before going live
- **⚡ Order Execution**: Ultra-low latency FIX protocol integration (5-10ms)

---

## 🚀 Quick Start

### Installation

```bash
# Basic installation
pip install neural-sdk

# With trading extras (recommended for live trading)
pip install "neural-sdk[trading]"

# Via uv (recommended)
uv pip install neural-sdk
uv pip install "neural-sdk[trading]"  # with trading extras
```

### Credentials Setup

Neural SDK connects to Kalshi's live API using RSA authentication. You'll need valid Kalshi credentials:

#### Environment Variables

```bash
# Option 1: Set environment variables
export KALSHI_EMAIL="your-email@example.com"
export KALSHI_PASSWORD="your-password"
export KALSHI_API_BASE="https://trading-api.kalshi.com/trade-api/v2"
```

#### .env File (Recommended)

```bash
# Option 2: Create .env file in your project root
echo "KALSHI_EMAIL=your-email@example.com" > .env
echo "KALSHI_PASSWORD=your-password" >> .env
echo "KALSHI_API_BASE=https://trading-api.kalshi.com/trade-api/v2" >> .env
```

The SDK will automatically load credentials from your .env file using python-dotenv.

### Basic Usage

#### 1. Authentication

```python
from neural.auth.http_client import KalshiHTTPClient

# Initialize with credentials
client = KalshiHTTPClient()

# Verify connection
markets = client.get('/markets')
print(f"Connected! Found {len(markets['markets'])} markets")
```

#### 2. Collect Historical Data

```python
from datetime import datetime, timedelta
import pandas as pd

# Set time range
end_ts = int(datetime.now().timestamp())
start_ts = end_ts - (7 * 24 * 3600)  # Last 7 days

# Collect trades with pagination
all_trades = []
cursor = None

while True:
    response = client.get_trades(
        ticker="KXNFLGAME-25SEP25SEAARI-SEA",
        min_ts=start_ts,
        max_ts=end_ts,
        limit=1000,
        cursor=cursor
    )

    trades = response.get("trades", [])
    if not trades:
        break

    all_trades.extend(trades)
    cursor = response.get("cursor")
    if not cursor:
        break

# Analyze
df = pd.DataFrame(all_trades)
print(f"Collected {len(df)} real trades from Kalshi")
```

#### 3. Build a Trading Strategy

```python
from neural.analysis.strategies import MeanReversionStrategy
from neural.analysis.backtesting import BacktestEngine

# Create strategy
strategy = MeanReversionStrategy(
    lookback_period=20,
    z_score_threshold=2.0
)

# Backtest
engine = BacktestEngine(strategy, initial_capital=10000)
results = engine.run(historical_data)

print(f"Total Return: {results['total_return']:.2%}")
print(f"Sharpe Ratio: {results['sharpe_ratio']:.2f}")
print(f"Max Drawdown: {results['max_drawdown']:.2%}")
```

#### 4. Live Trading

```python
from neural.trading.client import TradingClient

# Initialize trading client
trader = TradingClient()

# Place order
order = trader.place_order(
    ticker="KXNFLGAME-25SEP25SEAARI-SEA",
    side="yes",
    count=100,
    price=55
)

print(f"Order placed: {order['order_id']}")
```

---

## 📚 Documentation

### Core Modules

| Module | Description |
|--------|-------------|
| `neural.auth` | RSA authentication for Kalshi API |
| `neural.data_collection` | Historical and real-time market data |
| `neural.analysis.strategies` | Pre-built trading strategies |
| `neural.analysis.backtesting` | Strategy testing framework |
| `neural.analysis.risk` | Position sizing and risk management |
| `neural.trading` | Order execution (REST + FIX) |

### SDK Module Quickstart

#### Authentication Module

```python
from neural.auth.http_client import KalshiHTTPClient

# Initialize client with credentials from environment
client = KalshiHTTPClient()

# Test connection
response = client.get('/markets')
print(f"Connected! Found {len(response['markets'])} markets")

# Get specific market
market = client.get('/markets/NFLSUP-25-KCSF')
print(f"Market: {market['title']}")
```

#### Data Collection Module

```python
from neural.data_collection.kalshi_historical import KalshiHistoricalDataSource
from neural.data_collection.base import DataSourceConfig
import pandas as pd

# Configure historical data collection
config = DataSourceConfig(
    source_type="kalshi_historical",
    ticker="NFLSUP-25-KCSF",
    start_time="2024-01-01",
    end_time="2024-12-31"
)

# Collect historical trades
source = KalshiHistoricalDataSource(config)
trades_data = []

async def collect_trades():
    async for trade in source.collect():
        trades_data.append(trade)
        if len(trades_data) >= 1000:  # Limit for example
            break

# Run collection and analyze
import asyncio
asyncio.run(collect_trades())

df = pd.DataFrame(trades_data)
print(f"Collected {len(df)} trades")
print(f"Price range: {df['price'].min():.2f} - {df['price'].max():.2f}")
```

#### Trading Module

```python
from neural.trading.client import TradingClient

# Initialize trading client
trader = TradingClient()

# Check account balance
balance = trader.get_balance()
print(f"Available balance: ${balance:.2f}")

# Place a buy order
order = trader.place_order(
    ticker="NFLSUP-25-KCSF",
    side="yes",       # or "no"
    count=10,         # number of contracts
    price=52          # price in cents
)

print(f"Order placed: {order['order_id']}")

# Check order status
status = trader.get_order(order['order_id'])
print(f"Order status: {status['status']}")
```

### Examples

Explore working examples in the [`examples/`](./examples) directory:

- `01_init_user.py` - Authentication setup
- `stream_prices.py` - Real-time price streaming
- `test_historical_sync.py` - Historical data collection
- `05_mean_reversion_strategy.py` - Strategy implementation
- `07_live_trading_bot.py` - Automated trading bot

### Authentication Setup

1. Get API credentials from [Kalshi](https://kalshi.com)
2. Save credentials:
   ```bash
   # Create secrets directory
   mkdir secrets

   # Add your API key ID
   echo "your-api-key-id" > secrets/kalshi_api_key_id.txt

   # Add your private key
   cp ~/Downloads/kalshi_private_key.pem secrets/
   chmod 600 secrets/kalshi_private_key.pem
   ```

3. Set environment variables (optional):
   ```bash
   export KALSHI_API_KEY_ID="your-api-key-id"
   export KALSHI_PRIVATE_KEY_PATH="./secrets/kalshi_private_key.pem"
   ```

---

## 🧪 Testing

```bash
# Run all tests
pytest

# With coverage
pytest --cov=neural tests/

# Run specific test
pytest tests/test_auth.py -v
```

---

## 🤝 Contributing

We welcome contributions! Neural SDK is open source and community-driven.

### How to Contribute

1. **Fork the repository**
2. **Create a feature branch**: `git checkout -b feature/amazing-feature`
3. **Make your changes** and add tests
4. **Run tests**: `pytest`
5. **Commit**: `git commit -m "Add amazing feature"`
6. **Push**: `git push origin feature/amazing-feature`
7. **Open a Pull Request**

See [CONTRIBUTING.md](./CONTRIBUTING.md) for detailed guidelines.

### Development Setup

```bash
# Clone repository
git clone https://github.com/IntelIP/Neural.git
cd neural

# Install in editable mode with dev dependencies
pip install -e ".[dev]"

# Run tests
pytest

# Run linting
ruff check .
black --check .
```

---

## 📖 Resources

- **Documentation**: [neural-sdk.mintlify.app](https://neural-sdk.mintlify.app)
- **Examples**: [examples/](./examples)
- **API Reference**: [docs/api/](./docs/api)
- **Issues**: [GitHub Issues](https://github.com/IntelIP/Neural/issues)
- **Discussions**: [GitHub Discussions](https://github.com/IntelIP/Neural/discussions)

---

## 🗺️ Roadmap

### Version 0.1.0 (Beta) - Current

- ✅ Core authentication
- ✅ Historical data collection
- ✅ Strategy framework
- ✅ Backtesting engine
- ⚠️ REST streaming (stable)
- ⚠️ WebSocket streaming (experimental)

### Version 0.2.0 (Planned)

- 🔄 Enhanced WebSocket support
- 🔄 Real-time strategy execution
- 🔄 Portfolio optimization
- 🔄 Multi-market strategies

### Version 1.0.0 (Future)

- 🚀 Deployment stack (AWS/GCP integration)
- 🚀 Production monitoring & alerting
- 🚀 Advanced risk analytics
- 🚀 Machine learning strategies

---

## ⚖️ License

This project is licensed under the MIT License - see [LICENSE](./LICENSE) file for details.

### What This Means

✅ **You CAN**:
- Use commercially
- Modify the code
- Distribute
- Use privately

❌ **You CANNOT**:
- Hold us liable
- Use our trademarks

📋 **You MUST**:
- Include the original license
- Include copyright notice

---

## 🙏 Acknowledgments

- Built for the [Kalshi](https://kalshi.com) prediction market platform
- Inspired by the quantitative trading community
- Special thanks to all [contributors](https://github.com/IntelIP/Neural/graphs/contributors)

---

## 📞 Support

- **Documentation**: [neural-sdk.mintlify.app](https://neural-sdk.mintlify.app)
- **Issues**: [GitHub Issues](https://github.com/IntelIP/Neural/issues)
- **Discussions**: [GitHub Discussions](https://github.com/IntelIP/Neural/discussions)
- **Email**: support@neural-sdk.dev

---

<div align="center">

**Built with ❤️ by the Neural community**

[⭐ Star us on GitHub](https://github.com/IntelIP/Neural) • [📖 Read the Docs](https://neural-sdk.mintlify.app)

</div>

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "neural-sdk",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": "Advanced Intellectual Labs LLC <hudson@intelip.co>, Neural Contributors <contributors@neural-sdk.dev>",
    "keywords": "kalshi, prediction-markets, trading, algorithmic-trading, sports-betting, event-contracts, prediction-api, market-data, quantitative-finance",
    "author": null,
    "author_email": "Hudson Aikins <hudson@intelip.co>, Neural Contributors <contributors@neural-sdk.dev>",
    "download_url": "https://files.pythonhosted.org/packages/00/bb/6da2d5aaa32bf54c3359c33c93ba4d73b92d17f6924ce19b0166f6faa3d3/neural_sdk-0.2.0.tar.gz",
    "platform": null,
    "description": "# Neural SDK\n\n<div align=\"center\">\n\n[![PyPI version](https://badge.fury.io/py/neural-sdk.svg)](https://badge.fury.io/py/neural-sdk)\n[![Python Versions](https://img.shields.io/pypi/pyversions/neural-sdk.svg)](https://pypi.org/project/neural-sdk/)\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n[![GitHub Stars](https://img.shields.io/github/stars/IntelIP/Neural)](https://github.com/IntelIP/Neural)\n\n**Professional-grade SDK for algorithmic trading on prediction markets**\n\n[Documentation](https://neural-sdk.mintlify.app) \u2022 [Quick Start](#quick-start) \u2022 [Examples](./examples) \u2022 [Contributing](./CONTRIBUTING.md)\n\n</div>\n\n---\n\n## \u26a1 What is Neural?\n\nNeural SDK is a comprehensive Python framework for building algorithmic trading strategies on prediction markets. It provides everything you need to collect data, develop strategies, backtest performance, and execute trades\u2014all with production-grade reliability.\n\n### \ud83d\udd10 Real Data Guarantee\n\nAll market data comes from **Kalshi's live production API** via RSA-authenticated requests. This is the same infrastructure that powers a $100M+ trading platform\u2014no simulations, no mocks, just real markets on real events.\n\n### \u2b50 Key Features\n\n- **\ud83d\udd11 Authentication**: Battle-tested RSA signature implementation for Kalshi API\n- **\ud83d\udcca Historical Data**: Collect and analyze real trade data with cursor-based pagination\n- **\ud83d\ude80 Real-time Streaming**: REST API and FIX protocol support for live market data\n- **\ud83e\udde0 Strategy Framework**: Pre-built strategies (mean reversion, momentum, arbitrage)\n- **\u2696\ufe0f Risk Management**: Kelly Criterion, position sizing, stop-loss automation\n- **\ud83d\udd2c Backtesting Engine**: Test strategies on historical data before going live\n- **\u26a1 Order Execution**: Ultra-low latency FIX protocol integration (5-10ms)\n\n---\n\n## \ud83d\ude80 Quick Start\n\n### Installation\n\n```bash\n# Basic installation\npip install neural-sdk\n\n# With trading extras (recommended for live trading)\npip install \"neural-sdk[trading]\"\n\n# Via uv (recommended)\nuv pip install neural-sdk\nuv pip install \"neural-sdk[trading]\"  # with trading extras\n```\n\n### Credentials Setup\n\nNeural SDK connects to Kalshi's live API using RSA authentication. You'll need valid Kalshi credentials:\n\n#### Environment Variables\n\n```bash\n# Option 1: Set environment variables\nexport KALSHI_EMAIL=\"your-email@example.com\"\nexport KALSHI_PASSWORD=\"your-password\"\nexport KALSHI_API_BASE=\"https://trading-api.kalshi.com/trade-api/v2\"\n```\n\n#### .env File (Recommended)\n\n```bash\n# Option 2: Create .env file in your project root\necho \"KALSHI_EMAIL=your-email@example.com\" > .env\necho \"KALSHI_PASSWORD=your-password\" >> .env\necho \"KALSHI_API_BASE=https://trading-api.kalshi.com/trade-api/v2\" >> .env\n```\n\nThe SDK will automatically load credentials from your .env file using python-dotenv.\n\n### Basic Usage\n\n#### 1. Authentication\n\n```python\nfrom neural.auth.http_client import KalshiHTTPClient\n\n# Initialize with credentials\nclient = KalshiHTTPClient()\n\n# Verify connection\nmarkets = client.get('/markets')\nprint(f\"Connected! Found {len(markets['markets'])} markets\")\n```\n\n#### 2. Collect Historical Data\n\n```python\nfrom datetime import datetime, timedelta\nimport pandas as pd\n\n# Set time range\nend_ts = int(datetime.now().timestamp())\nstart_ts = end_ts - (7 * 24 * 3600)  # Last 7 days\n\n# Collect trades with pagination\nall_trades = []\ncursor = None\n\nwhile True:\n    response = client.get_trades(\n        ticker=\"KXNFLGAME-25SEP25SEAARI-SEA\",\n        min_ts=start_ts,\n        max_ts=end_ts,\n        limit=1000,\n        cursor=cursor\n    )\n\n    trades = response.get(\"trades\", [])\n    if not trades:\n        break\n\n    all_trades.extend(trades)\n    cursor = response.get(\"cursor\")\n    if not cursor:\n        break\n\n# Analyze\ndf = pd.DataFrame(all_trades)\nprint(f\"Collected {len(df)} real trades from Kalshi\")\n```\n\n#### 3. Build a Trading Strategy\n\n```python\nfrom neural.analysis.strategies import MeanReversionStrategy\nfrom neural.analysis.backtesting import BacktestEngine\n\n# Create strategy\nstrategy = MeanReversionStrategy(\n    lookback_period=20,\n    z_score_threshold=2.0\n)\n\n# Backtest\nengine = BacktestEngine(strategy, initial_capital=10000)\nresults = engine.run(historical_data)\n\nprint(f\"Total Return: {results['total_return']:.2%}\")\nprint(f\"Sharpe Ratio: {results['sharpe_ratio']:.2f}\")\nprint(f\"Max Drawdown: {results['max_drawdown']:.2%}\")\n```\n\n#### 4. Live Trading\n\n```python\nfrom neural.trading.client import TradingClient\n\n# Initialize trading client\ntrader = TradingClient()\n\n# Place order\norder = trader.place_order(\n    ticker=\"KXNFLGAME-25SEP25SEAARI-SEA\",\n    side=\"yes\",\n    count=100,\n    price=55\n)\n\nprint(f\"Order placed: {order['order_id']}\")\n```\n\n---\n\n## \ud83d\udcda Documentation\n\n### Core Modules\n\n| Module | Description |\n|--------|-------------|\n| `neural.auth` | RSA authentication for Kalshi API |\n| `neural.data_collection` | Historical and real-time market data |\n| `neural.analysis.strategies` | Pre-built trading strategies |\n| `neural.analysis.backtesting` | Strategy testing framework |\n| `neural.analysis.risk` | Position sizing and risk management |\n| `neural.trading` | Order execution (REST + FIX) |\n\n### SDK Module Quickstart\n\n#### Authentication Module\n\n```python\nfrom neural.auth.http_client import KalshiHTTPClient\n\n# Initialize client with credentials from environment\nclient = KalshiHTTPClient()\n\n# Test connection\nresponse = client.get('/markets')\nprint(f\"Connected! Found {len(response['markets'])} markets\")\n\n# Get specific market\nmarket = client.get('/markets/NFLSUP-25-KCSF')\nprint(f\"Market: {market['title']}\")\n```\n\n#### Data Collection Module\n\n```python\nfrom neural.data_collection.kalshi_historical import KalshiHistoricalDataSource\nfrom neural.data_collection.base import DataSourceConfig\nimport pandas as pd\n\n# Configure historical data collection\nconfig = DataSourceConfig(\n    source_type=\"kalshi_historical\",\n    ticker=\"NFLSUP-25-KCSF\",\n    start_time=\"2024-01-01\",\n    end_time=\"2024-12-31\"\n)\n\n# Collect historical trades\nsource = KalshiHistoricalDataSource(config)\ntrades_data = []\n\nasync def collect_trades():\n    async for trade in source.collect():\n        trades_data.append(trade)\n        if len(trades_data) >= 1000:  # Limit for example\n            break\n\n# Run collection and analyze\nimport asyncio\nasyncio.run(collect_trades())\n\ndf = pd.DataFrame(trades_data)\nprint(f\"Collected {len(df)} trades\")\nprint(f\"Price range: {df['price'].min():.2f} - {df['price'].max():.2f}\")\n```\n\n#### Trading Module\n\n```python\nfrom neural.trading.client import TradingClient\n\n# Initialize trading client\ntrader = TradingClient()\n\n# Check account balance\nbalance = trader.get_balance()\nprint(f\"Available balance: ${balance:.2f}\")\n\n# Place a buy order\norder = trader.place_order(\n    ticker=\"NFLSUP-25-KCSF\",\n    side=\"yes\",       # or \"no\"\n    count=10,         # number of contracts\n    price=52          # price in cents\n)\n\nprint(f\"Order placed: {order['order_id']}\")\n\n# Check order status\nstatus = trader.get_order(order['order_id'])\nprint(f\"Order status: {status['status']}\")\n```\n\n### Examples\n\nExplore working examples in the [`examples/`](./examples) directory:\n\n- `01_init_user.py` - Authentication setup\n- `stream_prices.py` - Real-time price streaming\n- `test_historical_sync.py` - Historical data collection\n- `05_mean_reversion_strategy.py` - Strategy implementation\n- `07_live_trading_bot.py` - Automated trading bot\n\n### Authentication Setup\n\n1. Get API credentials from [Kalshi](https://kalshi.com)\n2. Save credentials:\n   ```bash\n   # Create secrets directory\n   mkdir secrets\n\n   # Add your API key ID\n   echo \"your-api-key-id\" > secrets/kalshi_api_key_id.txt\n\n   # Add your private key\n   cp ~/Downloads/kalshi_private_key.pem secrets/\n   chmod 600 secrets/kalshi_private_key.pem\n   ```\n\n3. Set environment variables (optional):\n   ```bash\n   export KALSHI_API_KEY_ID=\"your-api-key-id\"\n   export KALSHI_PRIVATE_KEY_PATH=\"./secrets/kalshi_private_key.pem\"\n   ```\n\n---\n\n## \ud83e\uddea Testing\n\n```bash\n# Run all tests\npytest\n\n# With coverage\npytest --cov=neural tests/\n\n# Run specific test\npytest tests/test_auth.py -v\n```\n\n---\n\n## \ud83e\udd1d Contributing\n\nWe welcome contributions! Neural SDK is open source and community-driven.\n\n### How to Contribute\n\n1. **Fork the repository**\n2. **Create a feature branch**: `git checkout -b feature/amazing-feature`\n3. **Make your changes** and add tests\n4. **Run tests**: `pytest`\n5. **Commit**: `git commit -m \"Add amazing feature\"`\n6. **Push**: `git push origin feature/amazing-feature`\n7. **Open a Pull Request**\n\nSee [CONTRIBUTING.md](./CONTRIBUTING.md) for detailed guidelines.\n\n### Development Setup\n\n```bash\n# Clone repository\ngit clone https://github.com/IntelIP/Neural.git\ncd neural\n\n# Install in editable mode with dev dependencies\npip install -e \".[dev]\"\n\n# Run tests\npytest\n\n# Run linting\nruff check .\nblack --check .\n```\n\n---\n\n## \ud83d\udcd6 Resources\n\n- **Documentation**: [neural-sdk.mintlify.app](https://neural-sdk.mintlify.app)\n- **Examples**: [examples/](./examples)\n- **API Reference**: [docs/api/](./docs/api)\n- **Issues**: [GitHub Issues](https://github.com/IntelIP/Neural/issues)\n- **Discussions**: [GitHub Discussions](https://github.com/IntelIP/Neural/discussions)\n\n---\n\n## \ud83d\uddfa\ufe0f Roadmap\n\n### Version 0.1.0 (Beta) - Current\n\n- \u2705 Core authentication\n- \u2705 Historical data collection\n- \u2705 Strategy framework\n- \u2705 Backtesting engine\n- \u26a0\ufe0f REST streaming (stable)\n- \u26a0\ufe0f WebSocket streaming (experimental)\n\n### Version 0.2.0 (Planned)\n\n- \ud83d\udd04 Enhanced WebSocket support\n- \ud83d\udd04 Real-time strategy execution\n- \ud83d\udd04 Portfolio optimization\n- \ud83d\udd04 Multi-market strategies\n\n### Version 1.0.0 (Future)\n\n- \ud83d\ude80 Deployment stack (AWS/GCP integration)\n- \ud83d\ude80 Production monitoring & alerting\n- \ud83d\ude80 Advanced risk analytics\n- \ud83d\ude80 Machine learning strategies\n\n---\n\n## \u2696\ufe0f License\n\nThis project is licensed under the MIT License - see [LICENSE](./LICENSE) file for details.\n\n### What This Means\n\n\u2705 **You CAN**:\n- Use commercially\n- Modify the code\n- Distribute\n- Use privately\n\n\u274c **You CANNOT**:\n- Hold us liable\n- Use our trademarks\n\n\ud83d\udccb **You MUST**:\n- Include the original license\n- Include copyright notice\n\n---\n\n## \ud83d\ude4f Acknowledgments\n\n- Built for the [Kalshi](https://kalshi.com) prediction market platform\n- Inspired by the quantitative trading community\n- Special thanks to all [contributors](https://github.com/IntelIP/Neural/graphs/contributors)\n\n---\n\n## \ud83d\udcde Support\n\n- **Documentation**: [neural-sdk.mintlify.app](https://neural-sdk.mintlify.app)\n- **Issues**: [GitHub Issues](https://github.com/IntelIP/Neural/issues)\n- **Discussions**: [GitHub Discussions](https://github.com/IntelIP/Neural/discussions)\n- **Email**: support@neural-sdk.dev\n\n---\n\n<div align=\"center\">\n\n**Built with \u2764\ufe0f by the Neural community**\n\n[\u2b50 Star us on GitHub](https://github.com/IntelIP/Neural) \u2022 [\ud83d\udcd6 Read the Docs](https://neural-sdk.mintlify.app)\n\n</div>\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Professional-grade SDK for algorithmic trading on prediction markets (Beta - Core features stable, advanced modules experimental)",
    "version": "0.2.0",
    "project_urls": {
        "Changelog": "https://github.com/IntelIP/Neural/blob/main/CHANGELOG.md",
        "Documentation": "https://neural-sdk.mintlify.app",
        "Homepage": "https://github.com/IntelIP/Neural",
        "Issues": "https://github.com/IntelIP/Neural/issues",
        "Repository": "https://github.com/IntelIP/Neural"
    },
    "split_keywords": [
        "kalshi",
        " prediction-markets",
        " trading",
        " algorithmic-trading",
        " sports-betting",
        " event-contracts",
        " prediction-api",
        " market-data",
        " quantitative-finance"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "1a96f5f05b13103992219b10f3fcbc626907d81422301785d6f724a608de0c02",
                "md5": "afb359e7ce57ffca6307079390f009bf",
                "sha256": "fecbc3cf57a5e4ba6a4165b183e1f5066d696b0f44668ffd5607e5fd668df748"
            },
            "downloads": -1,
            "filename": "neural_sdk-0.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "afb359e7ce57ffca6307079390f009bf",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 111556,
            "upload_time": "2025-10-13T19:30:33",
            "upload_time_iso_8601": "2025-10-13T19:30:33.526982Z",
            "url": "https://files.pythonhosted.org/packages/1a/96/f5f05b13103992219b10f3fcbc626907d81422301785d6f724a608de0c02/neural_sdk-0.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "00bb6da2d5aaa32bf54c3359c33c93ba4d73b92d17f6924ce19b0166f6faa3d3",
                "md5": "f900d46283c6782b6160e2db15a01b73",
                "sha256": "e53eca8e178be60d00c18fbdcfe44cd29f21384b5a1569166fa43bed4acb750b"
            },
            "downloads": -1,
            "filename": "neural_sdk-0.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "f900d46283c6782b6160e2db15a01b73",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 134190,
            "upload_time": "2025-10-13T19:30:35",
            "upload_time_iso_8601": "2025-10-13T19:30:35.664661Z",
            "url": "https://files.pythonhosted.org/packages/00/bb/6da2d5aaa32bf54c3359c33c93ba4d73b92d17f6924ce19b0166f6faa3d3/neural_sdk-0.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-13 19:30:35",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "IntelIP",
    "github_project": "Neural",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "neural-sdk"
}
        
Elapsed time: 2.40474s