# Neural Network Base Model
A flexible, from-scratch implementation of neural networks for regression tasks.
## Features
- Customizable network architecture
- Linear and non-linear regression capabilities
- Built-in data preprocessing and scaling
- Model persistence with pickle
- Comprehensive examples included
## Best Practices
- Data Scaling: Always use scaler_fit_transform on training data and scaler_transform on test data
- Architecture: Start with simple architectures and increase complexity as needed
- Learning Rate: Typical values are between 0.001 and 0.1
- Epochs: Monitor loss to determine appropriate training duration
- Validation: Always validate on held-out test data
## Limitation
- Currently supports only linear activations (no non-linearities)
- Basic optimization (no momentum, Adam, etc.)
- No built-in regularization
- CPU-only implementation
## Installation
```bash
pip install neuralnetwork-base
Raw data
{
"_id": null,
"home_page": null,
"name": "neuralnetwork-base-ahmadva23",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "neural-network, machine-learning, regression, deep-learning",
"author": null,
"author_email": "Ahmad <radwana423@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/01/6b/2f20672ff46863e78a1500b3815cb7686c7dadfabe2a470cbcc41ac8424a/neuralnetwork_base_ahmadva23-0.2.0.tar.gz",
"platform": null,
"description": "# Neural Network Base Model\r\n\r\nA flexible, from-scratch implementation of neural networks for regression tasks.\r\n\r\n## Features\r\n\r\n- Customizable network architecture\r\n- Linear and non-linear regression capabilities\r\n- Built-in data preprocessing and scaling\r\n- Model persistence with pickle\r\n- Comprehensive examples included\r\n\r\n## Best Practices\r\n\r\n- Data Scaling: Always use scaler_fit_transform on training data and scaler_transform on test data\r\n- Architecture: Start with simple architectures and increase complexity as needed\r\n- Learning Rate: Typical values are between 0.001 and 0.1\r\n- Epochs: Monitor loss to determine appropriate training duration\r\n- Validation: Always validate on held-out test data\r\n\r\n## Limitation\r\n- Currently supports only linear activations (no non-linearities)\r\n- Basic optimization (no momentum, Adam, etc.)\r\n- No built-in regularization\r\n- CPU-only implementation\r\n\r\n\r\n## Installation\r\n\r\n```bash\r\npip install neuralnetwork-base\r\n",
"bugtrack_url": null,
"license": null,
"summary": "A flexible neural network base model for regression tasks",
"version": "0.2.0",
"project_urls": null,
"split_keywords": [
"neural-network",
" machine-learning",
" regression",
" deep-learning"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "9089063fc06504ea68369a79317c9454a16faa32b8f3870ee48bbdaef357af7f",
"md5": "510526d2fb3f216cb1d3c59ccd412bb9",
"sha256": "f7fb78a5a2482fdf0a97a39dda8d1e28ec963660c1140fc201306d9226cd95c2"
},
"downloads": -1,
"filename": "neuralnetwork_base_ahmadva23-0.2.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "510526d2fb3f216cb1d3c59ccd412bb9",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 9331,
"upload_time": "2025-10-06T05:58:52",
"upload_time_iso_8601": "2025-10-06T05:58:52.154012Z",
"url": "https://files.pythonhosted.org/packages/90/89/063fc06504ea68369a79317c9454a16faa32b8f3870ee48bbdaef357af7f/neuralnetwork_base_ahmadva23-0.2.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "016b2f20672ff46863e78a1500b3815cb7686c7dadfabe2a470cbcc41ac8424a",
"md5": "b61adbb9d003036226eea3a1a5160d25",
"sha256": "ce5cf0cdbf53274da4c973cd1b5e7c14f9ad50019da9af8cd37d8c7a1a039a38"
},
"downloads": -1,
"filename": "neuralnetwork_base_ahmadva23-0.2.0.tar.gz",
"has_sig": false,
"md5_digest": "b61adbb9d003036226eea3a1a5160d25",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 16588,
"upload_time": "2025-10-06T05:58:53",
"upload_time_iso_8601": "2025-10-06T05:58:53.566664Z",
"url": "https://files.pythonhosted.org/packages/01/6b/2f20672ff46863e78a1500b3815cb7686c7dadfabe2a470cbcc41ac8424a/neuralnetwork_base_ahmadva23-0.2.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-06 05:58:53",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "neuralnetwork-base-ahmadva23"
}