neuralnetwork-base-ahmadva23


Nameneuralnetwork-base-ahmadva23 JSON
Version 0.2.0 PyPI version JSON
download
home_pageNone
SummaryA flexible neural network base model for regression tasks
upload_time2025-10-06 05:58:53
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseNone
keywords neural-network machine-learning regression deep-learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Neural Network Base Model

A flexible, from-scratch implementation of neural networks for regression tasks.

## Features

- Customizable network architecture
- Linear and non-linear regression capabilities
- Built-in data preprocessing and scaling
- Model persistence with pickle
- Comprehensive examples included

## Best Practices

- Data Scaling: Always use scaler_fit_transform on training data and scaler_transform on test data
- Architecture: Start with simple architectures and increase complexity as needed
- Learning Rate: Typical values are between 0.001 and 0.1
- Epochs: Monitor loss to determine appropriate training duration
- Validation: Always validate on held-out test data

## Limitation
- Currently supports only linear activations (no non-linearities)
- Basic optimization (no momentum, Adam, etc.)
- No built-in regularization
- CPU-only implementation


## Installation

```bash
pip install neuralnetwork-base

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "neuralnetwork-base-ahmadva23",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "neural-network, machine-learning, regression, deep-learning",
    "author": null,
    "author_email": "Ahmad <radwana423@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/01/6b/2f20672ff46863e78a1500b3815cb7686c7dadfabe2a470cbcc41ac8424a/neuralnetwork_base_ahmadva23-0.2.0.tar.gz",
    "platform": null,
    "description": "# Neural Network Base Model\r\n\r\nA flexible, from-scratch implementation of neural networks for regression tasks.\r\n\r\n## Features\r\n\r\n- Customizable network architecture\r\n- Linear and non-linear regression capabilities\r\n- Built-in data preprocessing and scaling\r\n- Model persistence with pickle\r\n- Comprehensive examples included\r\n\r\n## Best Practices\r\n\r\n- Data Scaling: Always use scaler_fit_transform on training data and scaler_transform on test data\r\n- Architecture: Start with simple architectures and increase complexity as needed\r\n- Learning Rate: Typical values are between 0.001 and 0.1\r\n- Epochs: Monitor loss to determine appropriate training duration\r\n- Validation: Always validate on held-out test data\r\n\r\n## Limitation\r\n- Currently supports only linear activations (no non-linearities)\r\n- Basic optimization (no momentum, Adam, etc.)\r\n- No built-in regularization\r\n- CPU-only implementation\r\n\r\n\r\n## Installation\r\n\r\n```bash\r\npip install neuralnetwork-base\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A flexible neural network base model for regression tasks",
    "version": "0.2.0",
    "project_urls": null,
    "split_keywords": [
        "neural-network",
        " machine-learning",
        " regression",
        " deep-learning"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "9089063fc06504ea68369a79317c9454a16faa32b8f3870ee48bbdaef357af7f",
                "md5": "510526d2fb3f216cb1d3c59ccd412bb9",
                "sha256": "f7fb78a5a2482fdf0a97a39dda8d1e28ec963660c1140fc201306d9226cd95c2"
            },
            "downloads": -1,
            "filename": "neuralnetwork_base_ahmadva23-0.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "510526d2fb3f216cb1d3c59ccd412bb9",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 9331,
            "upload_time": "2025-10-06T05:58:52",
            "upload_time_iso_8601": "2025-10-06T05:58:52.154012Z",
            "url": "https://files.pythonhosted.org/packages/90/89/063fc06504ea68369a79317c9454a16faa32b8f3870ee48bbdaef357af7f/neuralnetwork_base_ahmadva23-0.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "016b2f20672ff46863e78a1500b3815cb7686c7dadfabe2a470cbcc41ac8424a",
                "md5": "b61adbb9d003036226eea3a1a5160d25",
                "sha256": "ce5cf0cdbf53274da4c973cd1b5e7c14f9ad50019da9af8cd37d8c7a1a039a38"
            },
            "downloads": -1,
            "filename": "neuralnetwork_base_ahmadva23-0.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "b61adbb9d003036226eea3a1a5160d25",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 16588,
            "upload_time": "2025-10-06T05:58:53",
            "upload_time_iso_8601": "2025-10-06T05:58:53.566664Z",
            "url": "https://files.pythonhosted.org/packages/01/6b/2f20672ff46863e78a1500b3815cb7686c7dadfabe2a470cbcc41ac8424a/neuralnetwork_base_ahmadva23-0.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-06 05:58:53",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "neuralnetwork-base-ahmadva23"
}
        
Elapsed time: 2.09618s