neurolite


Nameneurolite JSON
Version 0.2.0 PyPI version JSON
download
home_pagehttps://github.com/dot-css/neurolite
SummaryAI/ML/DL/NLP productivity library for minimal-code machine learning workflows
upload_time2025-08-02 12:14:37
maintainerNone
docs_urlNone
authorNeuroLite Team
requires_python>=3.8
licenseNone
keywords machine learning deep learning nlp computer vision automation
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # NeuroLite 🧠⚡

[![PyPI version](https://badge.fury.io/py/neurolite.svg)](https://badge.fury.io/py/neurolite)
[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Coverage](https://codecov.io/gh/dot-css/neurolite/branch/main/graph/badge.svg)](https://codecov.io/gh/dot-css/neurolite)

**NeuroLite** is a revolutionary AI/ML/DL/NLP productivity library that enables you to build, train, and deploy machine learning models with **minimal code**. Transform complex ML workflows into simple, intuitive operations.

## 🚀 Why NeuroLite?

- **🎯 Minimal Code**: Train state-of-the-art models in less than 10 lines of code
- **🤖 Auto-Everything**: Automatic data processing, model selection, and hyperparameter tuning
- **🌍 Multi-Domain**: Unified interface for Computer Vision, NLP, and Traditional ML
- **⚡ Production Ready**: One-click deployment to production environments
- **🔧 Extensible**: Plugin system for custom models and workflows
- **📊 Rich Visualization**: Built-in dashboards and reporting tools

## 📦 Installation

### Quick Install
```bash
pip install neurolite
```

### Development Install
```bash
git clone https://github.com/dot-css/neurolite.git
cd neurolite
pip install -e ".[dev]"
```

### Optional Dependencies
```bash
# For TensorFlow support
pip install neurolite[tensorflow]

# For XGBoost support  
pip install neurolite[xgboost]

# Install everything
pip install neurolite[all]
```

## 🎯 Quick Start

### Image Classification in 3 Lines
```python
from neurolite import train

# Train a computer vision model
model = train(data="path/to/images", task="image_classification")
predictions = model.predict("path/to/new/image.jpg")
```

### Text Classification
```python
from neurolite import train

# Train an NLP model
model = train(data="reviews.csv", task="sentiment_analysis", target="sentiment")
result = model.predict("This product is amazing!")
```

### Tabular Data Prediction
```python
from neurolite import train

# Train on structured data
model = train(data="sales.csv", task="regression", target="revenue")
forecast = model.predict({"feature1": 100, "feature2": "category_a"})
```

### One-Click Deployment
```python
from neurolite import deploy

# Deploy your model instantly
endpoint = deploy(model, platform="cloud", auto_scale=True)
print(f"Model deployed at: {endpoint.url}")
```

## 🌟 Key Features

### 🤖 Automatic Intelligence
- **Auto Data Processing**: Handles missing values, encoding, scaling automatically
- **Auto Model Selection**: Chooses the best model architecture for your data
- **Auto Hyperparameter Tuning**: Optimizes model parameters using advanced algorithms
- **Auto Feature Engineering**: Creates and selects relevant features

### 🎨 Multi-Domain Support

#### Computer Vision
```python
# Image classification, object detection, segmentation
model = train(data="images/", task="object_detection")
results = model.predict("test_image.jpg")
```

#### Natural Language Processing
```python
# Text classification, sentiment analysis, translation
model = train(data="texts.csv", task="text_generation")
generated = model.predict("Once upon a time")
```

#### Traditional ML
```python
# Regression, classification, clustering
model = train(data="tabular.csv", task="classification")
predictions = model.predict(new_data)
```

### 🚀 Production Deployment
```python
from neurolite import deploy

# Deploy to various platforms
deploy(model, platform="aws")        # AWS Lambda/SageMaker
deploy(model, platform="gcp")        # Google Cloud
deploy(model, platform="azure")      # Azure ML
deploy(model, platform="docker")     # Docker container
deploy(model, platform="kubernetes") # Kubernetes cluster
```

## 📊 Advanced Features

### Hyperparameter Optimization
```python
from neurolite import train

model = train(
    data="data.csv",
    task="classification",
    optimization="bayesian",  # bayesian, grid, random
    trials=100,
    timeout=3600  # 1 hour
)
```

### Model Ensembles
```python
from neurolite import train

# Automatic ensemble creation
model = train(
    data="data.csv",
    task="regression",
    ensemble=True,
    ensemble_size=5
)
```

### Custom Workflows
```python
from neurolite.workflows import create_workflow

# Define custom ML pipeline
workflow = create_workflow([
    "data_cleaning",
    "feature_engineering", 
    "model_training",
    "evaluation",
    "deployment"
])

result = workflow.run(data="data.csv")
```

### Real-time Monitoring
```python
from neurolite import monitor

# Monitor deployed models
monitor.track(model, metrics=["accuracy", "latency", "drift"])
dashboard = monitor.dashboard(model)
```

## 🔧 Configuration

### Global Settings
```python
import neurolite

# Configure global settings
neurolite.config.set_device("gpu")  # cpu, gpu, auto
neurolite.config.set_cache_dir("./cache")
neurolite.config.set_log_level("INFO")
```

### Model-Specific Configuration
```python
model = train(
    data="data.csv",
    task="classification",
    config={
        "model_type": "neural_network",
        "epochs": 100,
        "batch_size": 32,
        "learning_rate": 0.001,
        "early_stopping": True
    }
)
```

## 📈 Performance Benchmarks

| Task | Dataset | NeuroLite | Traditional Approach | Time Saved |
|------|---------|-----------|---------------------|-------------|
| Image Classification | CIFAR-10 | 3 lines | 200+ lines | 98.5% |
| Sentiment Analysis | IMDB | 2 lines | 150+ lines | 98.7% |
| Sales Forecasting | Custom | 4 lines | 300+ lines | 98.7% |

## 🛠️ Supported Models

### Computer Vision
- **Classification**: ResNet, EfficientNet, Vision Transformer
- **Object Detection**: YOLO, Faster R-CNN, SSD
- **Segmentation**: U-Net, DeepLab, FCN

### Natural Language Processing
- **Text Classification**: BERT, RoBERTa, DistilBERT
- **Text Generation**: GPT-2, T5, BART
- **Translation**: MarianMT, T5
- **Question Answering**: BERT, RoBERTa

### Traditional ML
- **Classification**: Random Forest, XGBoost, SVM, Logistic Regression
- **Regression**: Linear Regression, Random Forest, Gradient Boosting
- **Clustering**: K-Means, DBSCAN, Hierarchical
- **Ensemble**: Voting, Stacking, Bagging

## 🔌 Plugin System

Extend NeuroLite with custom models and workflows:

```python
from neurolite.plugins import register_model

@register_model("my_custom_model")
class CustomModel:
    def train(self, data):
        # Custom training logic
        pass
    
    def predict(self, data):
        # Custom prediction logic
        pass

# Use your custom model
model = train(data="data.csv", model="my_custom_model")
```

## 📚 Documentation

- **[Getting Started Guide](https://neurolite.readthedocs.io/getting-started)**
- **[API Reference](https://neurolite.readthedocs.io/api)**
- **[Tutorials](https://neurolite.readthedocs.io/tutorials)**
- **[Examples](https://github.com/dot-css/neurolite/tree/main/examples)**
- **[Plugin Development](https://neurolite.readthedocs.io/plugins)**

## 🤝 Contributing

We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.

### Development Setup
```bash
git clone https://github.com/dot-css/neurolite.git
cd neurolite
pip install -e ".[dev]"
pre-commit install
```

### Running Tests
```bash
pytest tests/ -v
```

### Code Quality
```bash
black neurolite/ tests/
flake8 neurolite/ tests/
mypy neurolite/
```

## 📄 License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## 🙏 Acknowledgments

- Built with ❤️ by the NeuroLite Team
- Powered by PyTorch, Transformers, Scikit-learn, and other amazing open-source libraries
- Special thanks to our contributors and the ML community

## 📞 Support

- **Documentation**: [https://neurolite.readthedocs.io](https://neurolite.readthedocs.io)
- **Issues**: [GitHub Issues](https://github.com/dot-css/neurolite/issues)
- **Discussions**: [GitHub Discussions](https://github.com/dot-css/neurolite/discussions)
- **Email**: saqibshaikhdz@gmail.com


---

**Made with ❤️ for the AI/ML community**

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/dot-css/neurolite",
    "name": "neurolite",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "machine learning, deep learning, nlp, computer vision, automation",
    "author": "NeuroLite Team",
    "author_email": "NeuroLite Team <team@neurolite.ai>",
    "download_url": "https://files.pythonhosted.org/packages/73/45/9ba7df89b21c9543d6ae462a288ad54e17eadc4feddb51dabc6eb19bcb0e/neurolite-0.2.0.tar.gz",
    "platform": null,
    "description": "# NeuroLite \ud83e\udde0\u26a1\r\n\r\n[![PyPI version](https://badge.fury.io/py/neurolite.svg)](https://badge.fury.io/py/neurolite)\r\n[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)\r\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\r\n[![Coverage](https://codecov.io/gh/dot-css/neurolite/branch/main/graph/badge.svg)](https://codecov.io/gh/dot-css/neurolite)\r\n\r\n**NeuroLite** is a revolutionary AI/ML/DL/NLP productivity library that enables you to build, train, and deploy machine learning models with **minimal code**. Transform complex ML workflows into simple, intuitive operations.\r\n\r\n## \ud83d\ude80 Why NeuroLite?\r\n\r\n- **\ud83c\udfaf Minimal Code**: Train state-of-the-art models in less than 10 lines of code\r\n- **\ud83e\udd16 Auto-Everything**: Automatic data processing, model selection, and hyperparameter tuning\r\n- **\ud83c\udf0d Multi-Domain**: Unified interface for Computer Vision, NLP, and Traditional ML\r\n- **\u26a1 Production Ready**: One-click deployment to production environments\r\n- **\ud83d\udd27 Extensible**: Plugin system for custom models and workflows\r\n- **\ud83d\udcca Rich Visualization**: Built-in dashboards and reporting tools\r\n\r\n## \ud83d\udce6 Installation\r\n\r\n### Quick Install\r\n```bash\r\npip install neurolite\r\n```\r\n\r\n### Development Install\r\n```bash\r\ngit clone https://github.com/dot-css/neurolite.git\r\ncd neurolite\r\npip install -e \".[dev]\"\r\n```\r\n\r\n### Optional Dependencies\r\n```bash\r\n# For TensorFlow support\r\npip install neurolite[tensorflow]\r\n\r\n# For XGBoost support  \r\npip install neurolite[xgboost]\r\n\r\n# Install everything\r\npip install neurolite[all]\r\n```\r\n\r\n## \ud83c\udfaf Quick Start\r\n\r\n### Image Classification in 3 Lines\r\n```python\r\nfrom neurolite import train\r\n\r\n# Train a computer vision model\r\nmodel = train(data=\"path/to/images\", task=\"image_classification\")\r\npredictions = model.predict(\"path/to/new/image.jpg\")\r\n```\r\n\r\n### Text Classification\r\n```python\r\nfrom neurolite import train\r\n\r\n# Train an NLP model\r\nmodel = train(data=\"reviews.csv\", task=\"sentiment_analysis\", target=\"sentiment\")\r\nresult = model.predict(\"This product is amazing!\")\r\n```\r\n\r\n### Tabular Data Prediction\r\n```python\r\nfrom neurolite import train\r\n\r\n# Train on structured data\r\nmodel = train(data=\"sales.csv\", task=\"regression\", target=\"revenue\")\r\nforecast = model.predict({\"feature1\": 100, \"feature2\": \"category_a\"})\r\n```\r\n\r\n### One-Click Deployment\r\n```python\r\nfrom neurolite import deploy\r\n\r\n# Deploy your model instantly\r\nendpoint = deploy(model, platform=\"cloud\", auto_scale=True)\r\nprint(f\"Model deployed at: {endpoint.url}\")\r\n```\r\n\r\n## \ud83c\udf1f Key Features\r\n\r\n### \ud83e\udd16 Automatic Intelligence\r\n- **Auto Data Processing**: Handles missing values, encoding, scaling automatically\r\n- **Auto Model Selection**: Chooses the best model architecture for your data\r\n- **Auto Hyperparameter Tuning**: Optimizes model parameters using advanced algorithms\r\n- **Auto Feature Engineering**: Creates and selects relevant features\r\n\r\n### \ud83c\udfa8 Multi-Domain Support\r\n\r\n#### Computer Vision\r\n```python\r\n# Image classification, object detection, segmentation\r\nmodel = train(data=\"images/\", task=\"object_detection\")\r\nresults = model.predict(\"test_image.jpg\")\r\n```\r\n\r\n#### Natural Language Processing\r\n```python\r\n# Text classification, sentiment analysis, translation\r\nmodel = train(data=\"texts.csv\", task=\"text_generation\")\r\ngenerated = model.predict(\"Once upon a time\")\r\n```\r\n\r\n#### Traditional ML\r\n```python\r\n# Regression, classification, clustering\r\nmodel = train(data=\"tabular.csv\", task=\"classification\")\r\npredictions = model.predict(new_data)\r\n```\r\n\r\n### \ud83d\ude80 Production Deployment\r\n```python\r\nfrom neurolite import deploy\r\n\r\n# Deploy to various platforms\r\ndeploy(model, platform=\"aws\")        # AWS Lambda/SageMaker\r\ndeploy(model, platform=\"gcp\")        # Google Cloud\r\ndeploy(model, platform=\"azure\")      # Azure ML\r\ndeploy(model, platform=\"docker\")     # Docker container\r\ndeploy(model, platform=\"kubernetes\") # Kubernetes cluster\r\n```\r\n\r\n## \ud83d\udcca Advanced Features\r\n\r\n### Hyperparameter Optimization\r\n```python\r\nfrom neurolite import train\r\n\r\nmodel = train(\r\n    data=\"data.csv\",\r\n    task=\"classification\",\r\n    optimization=\"bayesian\",  # bayesian, grid, random\r\n    trials=100,\r\n    timeout=3600  # 1 hour\r\n)\r\n```\r\n\r\n### Model Ensembles\r\n```python\r\nfrom neurolite import train\r\n\r\n# Automatic ensemble creation\r\nmodel = train(\r\n    data=\"data.csv\",\r\n    task=\"regression\",\r\n    ensemble=True,\r\n    ensemble_size=5\r\n)\r\n```\r\n\r\n### Custom Workflows\r\n```python\r\nfrom neurolite.workflows import create_workflow\r\n\r\n# Define custom ML pipeline\r\nworkflow = create_workflow([\r\n    \"data_cleaning\",\r\n    \"feature_engineering\", \r\n    \"model_training\",\r\n    \"evaluation\",\r\n    \"deployment\"\r\n])\r\n\r\nresult = workflow.run(data=\"data.csv\")\r\n```\r\n\r\n### Real-time Monitoring\r\n```python\r\nfrom neurolite import monitor\r\n\r\n# Monitor deployed models\r\nmonitor.track(model, metrics=[\"accuracy\", \"latency\", \"drift\"])\r\ndashboard = monitor.dashboard(model)\r\n```\r\n\r\n## \ud83d\udd27 Configuration\r\n\r\n### Global Settings\r\n```python\r\nimport neurolite\r\n\r\n# Configure global settings\r\nneurolite.config.set_device(\"gpu\")  # cpu, gpu, auto\r\nneurolite.config.set_cache_dir(\"./cache\")\r\nneurolite.config.set_log_level(\"INFO\")\r\n```\r\n\r\n### Model-Specific Configuration\r\n```python\r\nmodel = train(\r\n    data=\"data.csv\",\r\n    task=\"classification\",\r\n    config={\r\n        \"model_type\": \"neural_network\",\r\n        \"epochs\": 100,\r\n        \"batch_size\": 32,\r\n        \"learning_rate\": 0.001,\r\n        \"early_stopping\": True\r\n    }\r\n)\r\n```\r\n\r\n## \ud83d\udcc8 Performance Benchmarks\r\n\r\n| Task | Dataset | NeuroLite | Traditional Approach | Time Saved |\r\n|------|---------|-----------|---------------------|-------------|\r\n| Image Classification | CIFAR-10 | 3 lines | 200+ lines | 98.5% |\r\n| Sentiment Analysis | IMDB | 2 lines | 150+ lines | 98.7% |\r\n| Sales Forecasting | Custom | 4 lines | 300+ lines | 98.7% |\r\n\r\n## \ud83d\udee0\ufe0f Supported Models\r\n\r\n### Computer Vision\r\n- **Classification**: ResNet, EfficientNet, Vision Transformer\r\n- **Object Detection**: YOLO, Faster R-CNN, SSD\r\n- **Segmentation**: U-Net, DeepLab, FCN\r\n\r\n### Natural Language Processing\r\n- **Text Classification**: BERT, RoBERTa, DistilBERT\r\n- **Text Generation**: GPT-2, T5, BART\r\n- **Translation**: MarianMT, T5\r\n- **Question Answering**: BERT, RoBERTa\r\n\r\n### Traditional ML\r\n- **Classification**: Random Forest, XGBoost, SVM, Logistic Regression\r\n- **Regression**: Linear Regression, Random Forest, Gradient Boosting\r\n- **Clustering**: K-Means, DBSCAN, Hierarchical\r\n- **Ensemble**: Voting, Stacking, Bagging\r\n\r\n## \ud83d\udd0c Plugin System\r\n\r\nExtend NeuroLite with custom models and workflows:\r\n\r\n```python\r\nfrom neurolite.plugins import register_model\r\n\r\n@register_model(\"my_custom_model\")\r\nclass CustomModel:\r\n    def train(self, data):\r\n        # Custom training logic\r\n        pass\r\n    \r\n    def predict(self, data):\r\n        # Custom prediction logic\r\n        pass\r\n\r\n# Use your custom model\r\nmodel = train(data=\"data.csv\", model=\"my_custom_model\")\r\n```\r\n\r\n## \ud83d\udcda Documentation\r\n\r\n- **[Getting Started Guide](https://neurolite.readthedocs.io/getting-started)**\r\n- **[API Reference](https://neurolite.readthedocs.io/api)**\r\n- **[Tutorials](https://neurolite.readthedocs.io/tutorials)**\r\n- **[Examples](https://github.com/dot-css/neurolite/tree/main/examples)**\r\n- **[Plugin Development](https://neurolite.readthedocs.io/plugins)**\r\n\r\n## \ud83e\udd1d Contributing\r\n\r\nWe welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.\r\n\r\n### Development Setup\r\n```bash\r\ngit clone https://github.com/dot-css/neurolite.git\r\ncd neurolite\r\npip install -e \".[dev]\"\r\npre-commit install\r\n```\r\n\r\n### Running Tests\r\n```bash\r\npytest tests/ -v\r\n```\r\n\r\n### Code Quality\r\n```bash\r\nblack neurolite/ tests/\r\nflake8 neurolite/ tests/\r\nmypy neurolite/\r\n```\r\n\r\n## \ud83d\udcc4 License\r\n\r\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\r\n\r\n## \ud83d\ude4f Acknowledgments\r\n\r\n- Built with \u2764\ufe0f by the NeuroLite Team\r\n- Powered by PyTorch, Transformers, Scikit-learn, and other amazing open-source libraries\r\n- Special thanks to our contributors and the ML community\r\n\r\n## \ud83d\udcde Support\r\n\r\n- **Documentation**: [https://neurolite.readthedocs.io](https://neurolite.readthedocs.io)\r\n- **Issues**: [GitHub Issues](https://github.com/dot-css/neurolite/issues)\r\n- **Discussions**: [GitHub Discussions](https://github.com/dot-css/neurolite/discussions)\r\n- **Email**: saqibshaikhdz@gmail.com\r\n\r\n\r\n---\r\n\r\n**Made with \u2764\ufe0f for the AI/ML community**\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "AI/ML/DL/NLP productivity library for minimal-code machine learning workflows",
    "version": "0.2.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/dot-css/neurolite/issues",
        "Documentation": "https://neurolite.readthedocs.io",
        "Homepage": "https://github.com/dot-css/neurolite",
        "Repository": "https://github.com/dot-css/neurolite"
    },
    "split_keywords": [
        "machine learning",
        " deep learning",
        " nlp",
        " computer vision",
        " automation"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "4cdb20c489ade51772c2bc87658acfcb39b0dcc2fb66493d7d904163def268f3",
                "md5": "3b5500f86325e1c7962ef2f32d298338",
                "sha256": "0ea6e1836ba312f9f36ae7da96f0fa9631bb5a441562031061bc803988d342ae"
            },
            "downloads": -1,
            "filename": "neurolite-0.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3b5500f86325e1c7962ef2f32d298338",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 232324,
            "upload_time": "2025-08-02T12:14:35",
            "upload_time_iso_8601": "2025-08-02T12:14:35.048940Z",
            "url": "https://files.pythonhosted.org/packages/4c/db/20c489ade51772c2bc87658acfcb39b0dcc2fb66493d7d904163def268f3/neurolite-0.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "73459ba7df89b21c9543d6ae462a288ad54e17eadc4feddb51dabc6eb19bcb0e",
                "md5": "0beb4f652f398fb3089c961d74b5f927",
                "sha256": "68e8672faf999bdaf996601eacb6d95cfd9e9bbf5ed39fa9d1a4c0c0bd4197c8"
            },
            "downloads": -1,
            "filename": "neurolite-0.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "0beb4f652f398fb3089c961d74b5f927",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 349391,
            "upload_time": "2025-08-02T12:14:37",
            "upload_time_iso_8601": "2025-08-02T12:14:37.178794Z",
            "url": "https://files.pythonhosted.org/packages/73/45/9ba7df89b21c9543d6ae462a288ad54e17eadc4feddb51dabc6eb19bcb0e/neurolite-0.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-02 12:14:37",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "dot-css",
    "github_project": "neurolite",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "neurolite"
}
        
Elapsed time: 3.18918s