neurolog


Nameneurolog JSON
Version 0.0.1 PyPI version JSON
download
home_pageNone
SummaryNeurolog (pre-alpha)
upload_time2024-12-08 11:10:18
maintainerNone
docs_urlNone
authorNone
requires_python>=3.12
licenseNone
keywords database disk
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Overview
`co3` is a lightweight Python ORM for hierarchical storage management. It implements a
general type system for defining database components like relations, schemas, engines,
etc. Objects inheriting from the `CO3` base class can then define data transformations
that connect to database components, and can be automatically collected for coordinated
database insertion.

`co3` attempts to provide a general interface for interacting with a storage media (e.g.,
database, pickled objects, VSS framework, in-memory key-value stores, etc). The following
top-level classes capture the bulk of the operational model:

- **Database**: reference to a storage medium, with an `Accessor` for accessing data,
  `Manager` for managing database state, and an `Engine` for managing connections and
  external operations.
- **Accessor**: provides access to stored items in a `Database`, typically via a supported
  `select` operation over known `Component` types
- **Manager**: manages database storage state (e.g., supported inserts or database sync
  operations)
- **Mapper**: associates `CO3` types with `Schema` components, and provides automatic
  collection and composition operations for supported items
- **Collector**: collects data from defined `CO3` type transformations and prepares for
  `Database` insert operations
- **Component**: atomic storage groups for databases (i.e., generalized notion of a
  "relation" in relational algebra).
- **Indexer**: automatic caching of supported access queries to a `Database`
- **Schema**: general schema analog for grouping related `Component` sets
- **Differ**: facilitates set operations on results from selectable resources (e.g.,
  automatic comparison between file data on disk and file rows in a SQL database)
- **Syncer**: generalized syncing procedure for items between data resources (e.g.,
  syncing new, modified, and deleted files from disk to a SQL database that stores file
  metadata).

The **CO3** an abstract base class then makes it easy to integrate this model with regular
Python object hierarchies that can be mapped to a storage schema.


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "neurolog",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.12",
    "maintainer_email": null,
    "keywords": "database, disk",
    "author": null,
    "author_email": "Sam Griesemer <samgriesemer+git@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/82/6b/7635de4051e4407642cdecd680013479f4645b5ed17b86a91779dacb1abc/neurolog-0.0.1.tar.gz",
    "platform": null,
    "description": "# Overview\n`co3` is a lightweight Python ORM for hierarchical storage management. It implements a\ngeneral type system for defining database components like relations, schemas, engines,\netc. Objects inheriting from the `CO3` base class can then define data transformations\nthat connect to database components, and can be automatically collected for coordinated\ndatabase insertion.\n\n`co3` attempts to provide a general interface for interacting with a storage media (e.g.,\ndatabase, pickled objects, VSS framework, in-memory key-value stores, etc). The following\ntop-level classes capture the bulk of the operational model:\n\n- **Database**: reference to a storage medium, with an `Accessor` for accessing data,\n  `Manager` for managing database state, and an `Engine` for managing connections and\n  external operations.\n- **Accessor**: provides access to stored items in a `Database`, typically via a supported\n  `select` operation over known `Component` types\n- **Manager**: manages database storage state (e.g., supported inserts or database sync\n  operations)\n- **Mapper**: associates `CO3` types with `Schema` components, and provides automatic\n  collection and composition operations for supported items\n- **Collector**: collects data from defined `CO3` type transformations and prepares for\n  `Database` insert operations\n- **Component**: atomic storage groups for databases (i.e., generalized notion of a\n  \"relation\" in relational algebra).\n- **Indexer**: automatic caching of supported access queries to a `Database`\n- **Schema**: general schema analog for grouping related `Component` sets\n- **Differ**: facilitates set operations on results from selectable resources (e.g.,\n  automatic comparison between file data on disk and file rows in a SQL database)\n- **Syncer**: generalized syncing procedure for items between data resources (e.g.,\n  syncing new, modified, and deleted files from disk to a SQL database that stores file\n  metadata).\n\nThe **CO3** an abstract base class then makes it easy to integrate this model with regular\nPython object hierarchies that can be mapped to a storage schema.\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Neurolog (pre-alpha)",
    "version": "0.0.1",
    "project_urls": {
        "Documentation": "https://doc.olog.io/neurolog",
        "Homepage": "https://doc.olog.io/neurolog",
        "Issues": "https://git.olog.io/olog/neurolog/issues",
        "Repository": "https://git.olog.io/olog/neurolog"
    },
    "split_keywords": [
        "database",
        " disk"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "49541d5137001facba9a8dcabc8f5c3ba6c23c9e295677abd0de94a301a2a24d",
                "md5": "8eac165c7eab8912af34c87a5eb0a904",
                "sha256": "ada2b5b8b13b3987f8f76e360284c12e3e4f5cd01c04b5be5c19949bdf8686e0"
            },
            "downloads": -1,
            "filename": "neurolog-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8eac165c7eab8912af34c87a5eb0a904",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.12",
            "size": 4054,
            "upload_time": "2024-12-08T11:10:17",
            "upload_time_iso_8601": "2024-12-08T11:10:17.090808Z",
            "url": "https://files.pythonhosted.org/packages/49/54/1d5137001facba9a8dcabc8f5c3ba6c23c9e295677abd0de94a301a2a24d/neurolog-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "826b7635de4051e4407642cdecd680013479f4645b5ed17b86a91779dacb1abc",
                "md5": "33511289f7fbbf5ea2decdfc2d80f2fe",
                "sha256": "1b9f3c17ec466f12f1965a1b79d98d5f4210163f2fe80433e00598f0432952f1"
            },
            "downloads": -1,
            "filename": "neurolog-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "33511289f7fbbf5ea2decdfc2d80f2fe",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.12",
            "size": 4000,
            "upload_time": "2024-12-08T11:10:18",
            "upload_time_iso_8601": "2024-12-08T11:10:18.763147Z",
            "url": "https://files.pythonhosted.org/packages/82/6b/7635de4051e4407642cdecd680013479f4645b5ed17b86a91779dacb1abc/neurolog-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-08 11:10:18",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "neurolog"
}
        
Elapsed time: 0.44466s