neuromotifs


Nameneuromotifs JSON
Version 0.1.0a2 PyPI version JSON
download
home_pageNone
SummaryGeometry-aware network motif analysis for neocortical microcircuits
upload_time2025-08-08 20:57:25
maintainerNone
docs_urlNone
authorEyal Gal, Rodrigo Perin, Henry Markram, Michael London, Idan Segev
requires_python>=3.10
licenseMIT
keywords neuroscience motifs networks geometry microcircuit
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # neuromotifs
Python tools to load neuronal microcircuit geometry, generate geometry-aware null models, and quantify over/under-expression of 3-node motifs.

> Paper: *Neuron Morphological Asymmetry Explains Fundamental Network Stereotypy Across Neocortex* (Gal et al.)

## Install
```bash
pip install neuromotifs
# or, for dev
pip install -e .[dev]
```

## Highlights
- Motif counting for directed triplets (#1-#13)
- Geometry-driven random graph generators (1st-5th order) mirroring the paper’s models
- Reproducibility notebooks for Figures 1-4
- Simple CLI: `neuromotifs motifs`, `neuromotifs generate`, `neuromotifs fit`

## Quickstart
```python
# TBD
```

## Data
- `data/nmc/` contains tiny demonstrators only.
- For full datasets, see `data/README.md` for scripted download instructions.

## Citing
Please cite the paper and this package (see `CITATION.cff`).

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "neuromotifs",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "neuroscience, motifs, networks, geometry, microcircuit",
    "author": "Eyal Gal, Rodrigo Perin, Henry Markram, Michael London, Idan Segev",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/32/9c/d7e99054a1be76afdaa7f87b02505f4ad5c83f045cd5b6ae0e30f341ef82/neuromotifs-0.1.0a2.tar.gz",
    "platform": null,
    "description": "# neuromotifs\nPython tools to load neuronal microcircuit geometry, generate geometry-aware null models, and quantify over/under-expression of 3-node motifs.\n\n> Paper: *Neuron Morphological Asymmetry Explains Fundamental Network Stereotypy Across Neocortex* (Gal et al.)\n\n## Install\n```bash\npip install neuromotifs\n# or, for dev\npip install -e .[dev]\n```\n\n## Highlights\n- Motif counting for directed triplets (#1-#13)\n- Geometry-driven random graph generators (1st-5th order) mirroring the paper\u2019s models\n- Reproducibility notebooks for Figures 1-4\n- Simple CLI: `neuromotifs motifs`, `neuromotifs generate`, `neuromotifs fit`\n\n## Quickstart\n```python\n# TBD\n```\n\n## Data\n- `data/nmc/` contains tiny demonstrators only.\n- For full datasets, see `data/README.md` for scripted download instructions.\n\n## Citing\nPlease cite the paper and this package (see `CITATION.cff`).\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Geometry-aware network motif analysis for neocortical microcircuits",
    "version": "0.1.0a2",
    "project_urls": {
        "Homepage": "https://github.com/gialdetti/neuromotifs",
        "Issues": "https://github.com/gialdetti/neuromotifs/issues"
    },
    "split_keywords": [
        "neuroscience",
        " motifs",
        " networks",
        " geometry",
        " microcircuit"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "2edb2a1e2bde2646804a524988ac622d10b6ab3108a3c1ca6766e70b531f867e",
                "md5": "9d26b62696b42f1ac1ee14cf17656dc2",
                "sha256": "ef9e738402a989e798199a27cbc4d4ef990116ae7342305be95ff7a6c2db9b95"
            },
            "downloads": -1,
            "filename": "neuromotifs-0.1.0a2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "9d26b62696b42f1ac1ee14cf17656dc2",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 853884,
            "upload_time": "2025-08-08T20:57:23",
            "upload_time_iso_8601": "2025-08-08T20:57:23.509989Z",
            "url": "https://files.pythonhosted.org/packages/2e/db/2a1e2bde2646804a524988ac622d10b6ab3108a3c1ca6766e70b531f867e/neuromotifs-0.1.0a2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "329cd7e99054a1be76afdaa7f87b02505f4ad5c83f045cd5b6ae0e30f341ef82",
                "md5": "666de2f39537596ec461f630cad8f5ac",
                "sha256": "9b501f826f7738e1c816a145adaf3f8892f40729856db25295725289a166d589"
            },
            "downloads": -1,
            "filename": "neuromotifs-0.1.0a2.tar.gz",
            "has_sig": false,
            "md5_digest": "666de2f39537596ec461f630cad8f5ac",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 856114,
            "upload_time": "2025-08-08T20:57:25",
            "upload_time_iso_8601": "2025-08-08T20:57:25.518507Z",
            "url": "https://files.pythonhosted.org/packages/32/9c/d7e99054a1be76afdaa7f87b02505f4ad5c83f045cd5b6ae0e30f341ef82/neuromotifs-0.1.0a2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-08 20:57:25",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "gialdetti",
    "github_project": "neuromotifs",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "neuromotifs"
}
        
Elapsed time: 0.86836s