nfdi4culture


Namenfdi4culture JSON
Version 0.3 PyPI version JSON
download
home_pagehttps://nfdi4culture.de/
SummaryThis package provides a Python interface to the NFDI4Culture infrastructure.
upload_time2024-05-31 13:29:21
maintainerNone
docs_urlNone
authorEtienne Posthumus
requires_python<4.0,>=3.7
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Culture Python Package

Latest schema.org : https://schema.org/version/latest/schemaorg-current-https.jsonld

# NFDI4Culture

This is a placeholder for the Python tools being developed to manage the infrastructure of [NFDI4Culture](https://nfdi4culture.de/)

Example:

```python
from nfdi4culture import cto
from lidolator import from_file

item = cto.Item()

item.datafeed = "https://nfdi4culture.de/id/E5320"
# Or should we have cto.DataFeed("https://nfdi4culture.de/id/E5320") and the rest happens from there?
# either of the above will set things like .publisher on the Item too.
# and create the relevant schema.DataFeedItem and schema.DataFeed triples?

item.sourcefile = "http://foo.com/bar/baz.oai-pmh?id=123456"

# the update method expects a dict with key-value mappings
# the cto.Item objet knows how to map a key and value to the relevant fields.
# How do we specify this field mapping?
# And do we split it into a NamedNode/Literal difference?
item.update(from_file(filepath))

item.ntriples()
# or
item.turtle()
```

# TODO

- [ ] JS is working on scraper

## Open Discussion Points

Should we use RDFlib? While it is very much a "batteries included" package, for large datasets (which we increasingly want to create) it is just too slow.


            

Raw data

            {
    "_id": null,
    "home_page": "https://nfdi4culture.de/",
    "name": "nfdi4culture",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.7",
    "maintainer_email": null,
    "keywords": null,
    "author": "Etienne Posthumus",
    "author_email": "ep@epoz.org",
    "download_url": null,
    "platform": null,
    "description": "# Culture Python Package\n\nLatest schema.org : https://schema.org/version/latest/schemaorg-current-https.jsonld\n\n# NFDI4Culture\n\nThis is a placeholder for the Python tools being developed to manage the infrastructure of [NFDI4Culture](https://nfdi4culture.de/)\n\nExample:\n\n```python\nfrom nfdi4culture import cto\nfrom lidolator import from_file\n\nitem = cto.Item()\n\nitem.datafeed = \"https://nfdi4culture.de/id/E5320\"\n# Or should we have cto.DataFeed(\"https://nfdi4culture.de/id/E5320\") and the rest happens from there?\n# either of the above will set things like .publisher on the Item too.\n# and create the relevant schema.DataFeedItem and schema.DataFeed triples?\n\nitem.sourcefile = \"http://foo.com/bar/baz.oai-pmh?id=123456\"\n\n# the update method expects a dict with key-value mappings\n# the cto.Item objet knows how to map a key and value to the relevant fields.\n# How do we specify this field mapping?\n# And do we split it into a NamedNode/Literal difference?\nitem.update(from_file(filepath))\n\nitem.ntriples()\n# or\nitem.turtle()\n```\n\n# TODO\n\n- [ ] JS is working on scraper\n\n## Open Discussion Points\n\nShould we use RDFlib? While it is very much a \"batteries included\" package, for large datasets (which we increasingly want to create) it is just too slow.\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "This package provides a Python interface to the NFDI4Culture infrastructure.",
    "version": "0.3",
    "project_urls": {
        "Homepage": "https://nfdi4culture.de/"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "43c21babad6c22e77481b8ccdb7eae1eee5a36a9959005ea6adac45bd8817894",
                "md5": "efa13c5868b9a0eb652144fe2d5e1e86",
                "sha256": "8757140e330dcd9168f2ec512f717c4f7708a33377bd0253230e04e46f16fb30"
            },
            "downloads": -1,
            "filename": "nfdi4culture-0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "efa13c5868b9a0eb652144fe2d5e1e86",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.7",
            "size": 263177,
            "upload_time": "2024-05-31T13:29:21",
            "upload_time_iso_8601": "2024-05-31T13:29:21.015002Z",
            "url": "https://files.pythonhosted.org/packages/43/c2/1babad6c22e77481b8ccdb7eae1eee5a36a9959005ea6adac45bd8817894/nfdi4culture-0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-05-31 13:29:21",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "nfdi4culture"
}
        
Elapsed time: 0.23491s