NiaAML


NameNiaAML JSON
Version 2.1.0 PyPI version JSON
download
home_pagehttps://github.com/firefly-cpp/NiaAML
SummaryPython automated machine learning framework
upload_time2024-06-12 12:19:11
maintainerNone
docs_urlNone
authorLuka Peฤnik
requires_python<4.0,>=3.9
licenseMIT
keywords classification niapy scikit-learn nature-inspired algorithms feature selection preprocessing
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center"><img src=".github/images/niaaml_logo.png" alt="NiaAML" title="NiaAML"/></p>

<h1 align="center">
    ๐ŸŒณ NiaAML
</h1>

<p align="center">
    <img alt="PyPI Version" src="https://img.shields.io/pypi/v/niaaml.svg" href="https://pypi.python.org/pypi/niaaml">
    <img alt="PyPI - Python Version" src="https://img.shields.io/pypi/pyversions/niaaml.svg">
    <img alt="PyPI - Downloads" src="https://img.shields.io/pypi/dm/niaaml.svg" href="https://pepy.tech/project/niaaml">
    <a href="https://repology.org/project/python:niaaml/versions">
        <img src="https://repology.org/badge/tiny-repos/python:niaaml.svg" alt="Packaging status">
    </a>
    <img alt="Downloads" src="https://pepy.tech/badge/niaaml">
    <img alt="GitHub license" src="https://img.shields.io/github/license/lukapecnik/niaaml.svg" href="https://github.com/lukapecnik/niaaml/blob/master/LICENSE">
    <img alt="build" src="https://github.com/lukapecnik/niaaml/actions/workflows/test.yml/badge.svg">
    <img alt="Coverage Status" src="https://coveralls.io/repos/github/lukapecnik/NiaAML/badge.svg?branch=master" href="https://coveralls.io/github/lukapecnik/NiaAML?branch=master">
    <img alt="Documentation Status" src="https://readthedocs.org/projects/niaaml/badge/?version=latest" href="https://niaaml.readthedocs.io/en/latest/?badge=latest">
</p>

<p align="center">
    <img alt="GitHub commit activity" src="https://img.shields.io/github/commit-activity/w/lukapecnik/niaaml.svg">
    <img alt="Average time to resolve an issue" src="http://isitmaintained.com/badge/resolution/lukapecnik/niaaml.svg" href="http://isitmaintained.com/project/lukapecnik/niaaml">
    <img alt="Percentage of issues still open" src="http://isitmaintained.com/badge/open/lukapecnik/niaaml.svg" href="http://isitmaintained.com/project/lukapecnik/niaaml">
    <img alt="GitHub contributors" src="https://img.shields.io/github/contributors/lukapecnik/niaaml.svg">
</p>

<p align="center">
    <img alt="DOI" src="https://zenodo.org/badge/289322337.svg" href="https://zenodo.org/badge/latestdoi/289322337">
    <img alt="DOI" src="https://joss.theoj.org/papers/10.21105/joss.02949/status.svg" href="https://doi.org/10.21105/joss.02949">
</p>

<p align="center">
  <a href="https://github.com/firefly-cpp/NiaAML?tab=readme-ov-file#-installation">๐Ÿ“ฆ Installation</a> โ€ข
  <a href="https://github.com/firefly-cpp/NiaAML?tab=readme-ov-file#-graphical-user-interface">๐Ÿ’ป Graphical User Interface</a> โ€ข
  <a href="https://github.com/firefly-cpp/NiaAML?tab=readme-ov-file#-command-line-interface">๐Ÿง‘โ€๐Ÿ’ป Command Line Interface</a> โ€ข
  <a href="https://github.com/firefly-cpp/NiaAML?tab=readme-ov-file#-api">๐Ÿ“ฎ API</a> โ€ข
  <a href="https://github.com/firefly-cpp/NiaAML?tab=readme-ov-file#-implemented-components">โœจ Implemented Components</a> โ€ข
  <a href="https://github.com/firefly-cpp/NiaAML?tab=readme-ov-file#-optimization-process-and-parameter-tuning">๐Ÿ’ช Optimization Process And Parameter Tuning</a> โ€ข
  <a href="https://github.com/firefly-cpp/NiaAML?tab=readme-ov-file#-examples">๐Ÿ““ Examples</a> โ€ข
  <a href="https://github.com/firefly-cpp/NiaAML?tab=readme-ov-file#-contributors">๐Ÿซ‚ Contributors</a> โ€ข
  <a href="https://github.com/firefly-cpp/NiaAML?tab=readme-ov-file#-support">๐Ÿ™ Support</a> โ€ข
  <a href="https://github.com/firefly-cpp/NiaAML?tab=readme-ov-file#-license">๐Ÿ”‘ License</a> โ€ข
  <a href="https://github.com/firefly-cpp/NiaAML?tab=readme-ov-file#-cite-us">๐Ÿ“„ Cite Us</a>
</p>

NiaAML is a framework for Automated Machine Learning based on nature-inspired algorithms for optimization. The framework is written fully in Python. The name NiaAML comes from the Automated Machine Learning method of the same name [[1]](#1). Its goal is to compose the best possible classification pipeline for the given task efficiently using components on the input. The components are divided into three groups: feature selection algorithms, feature transformation algorithms and classifiers. The framework uses nature-inspired algorithms for optimization to choose the best set of components for the classification pipeline, and optimize their hyperparameters. We use the <a href="https://github.com/NiaOrg/NiaPy">NiaPy framework</a> for the optimization process, which is a popular Python collection of nature-inspired algorithms. The NiaAML framework is easy to use and customize or expand to suit your needs.

> ๐Ÿ†•๐Ÿ“ˆ NiaAML now also support regression tasks. The package still refers to regressors as "classifiers" to avoid introducing a breaking change to the API.

The NiaAML framework allows you not only to run full pipeline optimization, but also to separate implemented components such as classifiers, feature selection algorithms, etc. **It supports numerical and categorical features as well as missing values in datasets.**

* **Free software:** MIT license,
* **Documentation:** https://niaaml.readthedocs.io/en/latest/,
* **Python versions:** 3.9 | 3.10 | 3.11
* **Dependencies:** [click](CONTRIBUTING.md#development-dependencies),
* **Tested OS:** Windows, Ubuntu, Fedora, Linux Mint and CentOS. **However, that does not mean it does not work on others.**

![NiaAML Architecture](.github/images/niaaml.png)

---

## ๐Ÿ“ฆ Installation

### pip3

Install NiaAML with pip3:

```sh
pip3 install niaaml
```

In case you would like to try out the latest pre-release version of the framework, install it using:

```sh
pip3 install niaaml --pre
```

### Fedora Linux

To install NiaAML on Fedora, use:

```sh
$ dnf install python-niaaml
```

### Alpine Linux

To install NiaAML on Alpine Linux, please enable Community repository and use:

```sh
$ apk add py3-niaaml
```

### Arch Linux

To install NiaAML on Arch Linux, use:

```sh
$ yay -Syyu python-niaaml
```

### Nix

To install NiaAML with the [Nix package manager](https://search.nixos.org/packages?channel=23.11&show=python311Packages.niaaml), use:

```sh
$ nix-env -i python311Packages.niaaml
```

To enter a shell with the package already installed, use:

```sh
$ nix-shell -p python311Packages.niaaml
```

## ๐Ÿ’ป Graphical User Interface

There is a simple Graphical User Interface for the NiaAML package available [here](https://github.com/lukapecnik/NiaAML-GUI).

## ๐Ÿง‘โ€๐Ÿ’ป Command Line Interface

We also provide a CLI for quick pipeline optimizations and inference from the terminal without the need to write custom scripts.

When you install the package as instructed above, you will already have access to the `niaaml` command with sub-commands `optimize` and `infer`

For usage information, add the `--help` flag:

![niaaml help](.github/images/niaaml_cli_help.png)

![niaaml infer help](.github/images/niaaml_cli_infer_help.png)

An example Invocation of `optimize`:

![niaaml optimize example](.github/images/niaaml_cli_optimize_example.png)

## ๐Ÿ“ฎ API

There is a simple API for remote work with NiaAML package available [here](https://github.com/alenrajsp/NiaAML-API).

## โœจ Implemented Components

[Click here](COMPONENTS.md) for a list of currently implemented components divided into groups: classifiers, feature selection algorithms and feature transformation algorithms. At the end you can also see a list of currently implemented fitness functions for the optimization process, categorical features' encoders, and missing values' imputers. All of the components are passed into the optimization process using their class names. Let's say we want to choose between Adaptive Boosting, Bagging and Multi Layer Perceptron classifiers, Select K Best and Select Percentile feature selection algorithms and Normalizer as the feature transformation algorithm (may not be selected during the optimization process).

```python
PipelineOptimizer(
    data=...,
    classifiers=['AdaBoost', 'Bagging', 'MultiLayerPerceptron'],
    feature_selection_algorithms=['SelectKBest', 'SelectPercentile'],
    feature_transform_algorithms=['Normalizer']
)
```

The argument of the PipelineOptimizer `categorical_features_encoder` is `None` by default. If your dataset contains any categorical features, you need to specify an encoder to use. The same goes for `imputer` and features that contain missing values.

```python
PipelineOptimizer(
    data=...,
    classifiers=['AdaBoost', 'Bagging', 'MultiLayerPerceptron'],
    feature_selection_algorithms=['SelectKBest', 'SelectPercentile'],
    feature_transform_algorithms=['Normalizer'],
    categorical_features_encoder='OneHotEncoder',
    imputer='SimpleImputer'
)
```

For a full example see the [๐Ÿ““ Examples section](https://github.com/firefly-cpp/NiaAML/blob/master/README.md#-examples).

## ๐Ÿ’ช Optimization Process And Parameter Tuning

In the modifier version of NiaAML optimization process there are two types of optimization. The goal of the first type is to find an optimal set of components (feature selection algorithm, feature transformation algorithm and classifier). The next step is to find optimal parameters for the selected set of components, and that is the goal of the second type of optimization. Each component has an attribute `_params`, which is a dictionary of parameters and their possible values.

```python
self._params = dict(
    n_estimators = ParameterDefinition(MinMax(min=10, max=111), np.uint),
    algorithm = ParameterDefinition(['SAMME', 'SAMME.R'])
)
```

An individual in the first type of optimization is represented as a real-valued vector that has a size equal to the sum of the number of keys in all three dictionaries (classifier's `_params`, Feature Transformation algorithm's `_params` and feature selection algorithm's `_params`) and the value of each dimension is in the range [0.0, 1.0]. The second type of optimization maps real values from the individual's vector to those parameter definitions in the dictionaries. Each parameter's value can be defined as a range or array of values. In the first case, a value from a vector is mapped from one iterval to another, and in the second case, a value from the vector falls into one of the bins that represent an index of the array that holds possible parameters` values.

Let's say we have a classifier with 3 parameters, a feature selection algorithm with 2 parameters and feature transformation algorithm with 4 parameters. The size of an individual in the second type of optimization is 9. The size of an individual in the first type of optimization is always 3 (1 classifier, 1 feature selection algorithm and 1 feature transformation algorithm).

In some cases we may want to tune a parameter that needs additional information for setting its range of values, so we cannot set the range in the initialization method. In that case, we should set its value in the dictionary to None and define it later in the process. The parameter will be a part of the parameter tuning process as soon as we define its possible values. For example, see [Select K Best Feature Selection](niaaml/preprocessing/feature_selection/select_k_best.py) and its parameter `k`.

**The NiaAML framwork also supports running optimization according to the original method proposed in [[1]](#1) where the components selection and hyperparameter optimization steps are combined into one.**

## ๐Ÿ““ Examples

### Example of Usage

Load data and try to find the optimal pipeline for the given components. The example below uses the Particle Swarm Algorithm as the optimization algorithm. You can find a list of all available algorithms in the <a href="https://github.com/NiaOrg/NiaPy">NiaPy's repository</a>.

```python
from niaaml import PipelineOptimizer, Pipeline
from niaaml.data import BasicDataReader
import numpy
import pandas

# dummy random data
data_reader = BasicDataReader(
    x=numpy.random.uniform(low=0.0, high=15.0, size=(50, 3)),
    y=numpy.random.choice(['Class 1', 'Class 2'], size=50)
)

pipeline_optimizer = PipelineOptimizer(
    data=data_reader,
    classifiers=['AdaBoost', 'Bagging', 'MultiLayerPerceptron', 'RandomForest', 'ExtremelyRandomizedTrees', 'LinearSVC'],
    feature_selection_algorithms=['SelectKBest', 'SelectPercentile', 'ParticleSwarmOptimization', 'VarianceThreshold'],
    feature_transform_algorithms=['Normalizer', 'StandardScaler']
)

# run the modified version of optimization
pipeline1 = pipeline_optimizer.run('Accuracy', 15, 15, 300, 300, 'ParticleSwarmAlgorithm', 'ParticleSwarmAlgorithm')

# run the original version
pipeline2 = pipeline_optimizer.run_v1('Accuracy', 15, 400, 'ParticleSwarmAlgorithm')
```

You can save a result of the optimization process as an object to a file for later use.

```python
pipeline1.export('pipeline.ppln')
```

And also load it from a file and use the pipeline.

```python
loaded_pipeline = Pipeline.load('pipeline.ppln')

# some features (can be loaded using DataReader object instances)
x = pandas.DataFrame([[0.35, 0.46, 5.32], [0.16, 0.55, 12.5]])
y = loaded_pipeline.run(x)
```

You can also save a user-friendly representation of a pipeline to a text file.

```python
pipeline1.export_text('pipeline.txt')
```

This is a very simple example with dummy data. It is only intended to give you a basic idea of how to use the framework.

### ๐Ÿ“ˆ Example of a Regression Task

The API for solving regression tasks is not different to the classification use-case. One only has to choose the right components that support regression:

Currently, the following components support regression tasks:

โžก๏ธ **Feature Transform Algorithms**:

+ "Normalizer"
+ "StandardScaler"
+ "MaxAbsScaler"
+ "QuantileTransformer"
+ "RobustScaler"

๐Ÿ”Ž **Feature Selection Algorithms**:

+ "SelectKBest"
+ "SelectPercentile"
+ "SelectUnivariateRegression"

๐Ÿ”ฎ **Models (Classifiers)**:

+ "LinearRegression"
+ "RidgeRegression"
+ "LassoRegression"
+ "DecisionTreeRegression"
+ "GaussianProcessRegression"

```python
pipeline_optimizer = PipelineOptimizer(
    data=data_reader,
    feature_selection_algorithms=["SelectKBest", "SelectPercentile", "SelectUnivariateRegression"],
    feature_transform_algorithms=["Normalizer", "StandardScaler"],
    classifiers=["LinearRegression", "RidgeRegression", "LassoRegression", "DecisionTreeRegression", "GaussianProcessRegression"],
)

# run the modified version of optimization
pipeline1 = pipeline_optimizer.run("MSE", 10, 10, 20, 20, "ParticleSwarmAlgorithm")
```

### Example of a Pipeline Component's Implementation

The NiaAML framework is easily expandable, as you can implement components by overriding the base classes' methods. To implement a classifier you should inherit from the [Classifier](niaaml/classifiers/classifier.py) class, and you can do the same with [FeatureSelectionAlgorithm](niaaml/preprocessing/feature_selection/feature_selection_algorithm.py) and [FeatureTransformAlgorithm](niaaml/preprocessing/feature_transform/feature_transform_algorithm.py) classes. All of the mentioned classes inherit from the [PipelineComponent](niaaml/pipeline_component.py) class.

Take a look at the [Classifier](niaaml/classifiers/classifier.py) class and the implementation of the [AdaBoost](niaaml/classifiers/ada_boost.py) classifier that inherits from it.

### Example of a Fitness Function's Implementation

The NiaAML framework also allows you to implement your own fitness function. All you need to do is implement the [FitnessFunction](niaaml/fitness/fitness_function.py) class.

Take a look at the [Accuracy](niaaml/fitness/accuracy.py) implementation.

### Example of a Feature Encoder's Implementation

The NiaAML framework also allows you to implement your own feature encoder. All you need to do is implement the [FeatureEncoder](niaaml/preprocessing/encoding/feature_encoder.py) class.

Take a look at the [OneHotEncoder](niaaml/preprocessing/encoding/one_hot_encoder.py) implementation.

### Example of an Imputer's Implementation

The NiaAML framework also allows you to implement your own imputer. All you need to do is implement the [Imputer](niaaml/preprocessing/imputation/imputer.py) class.

Take a look at the [SimpleImputer](niaaml/preprocessing/imputation/simple_imputer.py) implementation.

### More

You can find more examples [here](examples).

## ๐Ÿซ‚ Contributors

Thanks goes to these wonderful people ([emoji key](https://allcontributors.org/docs/en/emoji-key)):

<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section -->
<!-- prettier-ignore-start -->
<!-- markdownlint-disable -->
<table>
  <tr>
    <td align="center"><a href="https://github.com/lukapecnik"><img src="https://avatars0.githubusercontent.com/u/23029992?s=460&u=d1c802fd8c82af0a020b1e21af80a34d6e28fb10&v=4?s=100" width="100px;" alt=""/><br /><sub><b>Luka Peฤnik</b></sub></a><br /><a href="https://github.com/lukapecnik/NiaAML/commits?author=lukapecnik" title="Code">๐Ÿ’ป</a> <a href="https://github.com/lukapecnik/NiaAML/commits?author=lukapecnik" title="Documentation">๐Ÿ“–</a> <a href="https://github.com/lukapecnik/NiaAML/pulls?q=is%3Apr+reviewed-by%3Alukapecnik" title="Reviewed Pull Requests">๐Ÿ‘€</a> <a href="https://github.com/lukapecnik/NiaAML/issues?q=author%3Alukapecnik" title="Bug reports">๐Ÿ›</a> <a href="#example-lukapecnik" title="Examples">๐Ÿ’ก</a> <a href="https://github.com/lukapecnik/NiaAML/commits?author=lukapecnik" title="Tests">โš ๏ธ</a> <a href="#infra-lukapecnik" title="Infrastructure (Hosting, Build-Tools, etc)">๐Ÿš‡</a></td>
    <td align="center"><a href="https://github.com/firefly-cpp"><img src="https://avatars2.githubusercontent.com/u/1633361?v=4?s=100" width="100px;" alt=""/><br /><sub><b>firefly-cpp</b></sub></a><br /><a href="https://github.com/lukapecnik/NiaAML/commits?author=firefly-cpp" title="Code">๐Ÿ’ป</a> <a href="https://github.com/lukapecnik/NiaAML/issues?q=author%3Afirefly-cpp" title="Bug reports">๐Ÿ›</a> <a href="#mentoring-firefly-cpp" title="Mentoring">๐Ÿง‘โ€๐Ÿซ</a> <a href="#research-firefly-cpp" title="Research">๐Ÿ”ฌ</a> <a href="#ideas-firefly-cpp" title="Ideas, Planning, & Feedback">๐Ÿค”</a></td>
    <td align="center"><a href="https://github.com/sisco0"><img src="https://avatars0.githubusercontent.com/u/25695302?v=4?s=100" width="100px;" alt=""/><br /><sub><b>sisco0</b></sub></a><br /><a href="#ideas-sisco0" title="Ideas, Planning, & Feedback">๐Ÿค”</a></td>
    <td align="center"><a href="https://github.com/zStupan"><img src="https://avatars.githubusercontent.com/u/48752988?v=4?s=100" width="100px;" alt=""/><br /><sub><b>zStupan</b></sub></a><br /><a href="https://github.com/lukapecnik/NiaAML/commits?author=zStupan" title="Code">๐Ÿ’ป</a></td>
    <td align="center"><a href="https://github.com/musicinmybrain"><img src="https://avatars.githubusercontent.com/u/6898909?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Ben Beasley</b></sub></a><br /><a href="https://github.com/lukapecnik/NiaAML/commits?author=musicinmybrain" title="Code">๐Ÿ’ป</a> <a href="#infra-musicinmybrain" title="Infrastructure (Hosting, Build-Tools, etc)">๐Ÿš‡</a></td>
    <td align="center"><a href="https://github.com/LaurenzBeck"><img src="https://avatars.githubusercontent.com/u/16887213?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Laurenz Farthofer</b></sub></a><br /><a href="https://github.com/lukapecnik/NiaAML/commits?author=laurenzbeck" title="Code">๐Ÿ’ป</a> <a href="https://github.com/lukapecnik/NiaAML/commits?author=laurenzbeck" title="Documentation">๐Ÿ“–</a> <a href="https://github.com/lukapecnik/NiaAML/commits?author=laurenzbeck" title="Infrastructure (Hosting, Build-Tools, etc)">๐Ÿš‡</a></td>
  </tr>
</table>

<!-- markdownlint-restore -->
<!-- prettier-ignore-end -->

<!-- ALL-CONTRIBUTORS-LIST:END -->

This project follows the [all-contributors](https://github.com/all-contributors/all-contributors) specification. Contributions of any kind are welcome!

## ๐Ÿ™‡ Contributing

We encourage you to contribute to NiaAML! Please check out the [Contributing to NiaAML guide](CONTRIBUTING.md) for guidelines about how to proceed.

Everyone interacting in NiaAML's codebases, issue trackers, chat rooms and mailing lists is expected to follow the NiaAML [code of conduct](CODE_OF_CONDUCT.md).

## ๐Ÿ™ Support

### โ“ Usage Questions

If you have questions about how to use NiaAML, or have an issue that isnโ€™t related to a bug, you can place a question on [StackOverflow](https://stackoverflow.com/).

You can also seek support via [email](mailto:lukapecnik96@gmail.com)

NiaAML is a community supported package, nobody is paid to develop package nor to handle NiaAML support.

**All people answering your questions are doing it with their own time, so please be kind and provide as much information as possible.**

## โ— Issues

Before creating bug reports, please check existing issues list as you might find out that you don't need to create one. When you are creating a bug report, please include as many details as possible in the [issue template](.github/templates/ISSUE_TEMPLATE.md).

## ๐Ÿ”‘ Licence

This package is distributed under the MIT License. This license can be found online at <http://www.opensource.org/licenses/MIT>.

## Disclaimer

This framework is provided as-is, and there are no guarantees that it fits your purposes or that it is bug-free. Use it at your own risk!

## ๐Ÿ“ References

<a id="1">[1]</a> Iztok Fister Jr., Milan Zorman, Duลกan Fister, Iztok Fister. <a href="https://link.springer.com/chapter/10.1007%2F978-981-15-2133-1_13">Continuous optimizers for automatic design and evaluation of classification pipelines</a>. In: Frontier applications of nature inspired computation. Springer tracts in nature-inspired computing, pp.281-301, 2020.

## ๐Ÿ“„ Cite us

```bibtex
@article{Peฤnik2021,
    doi = {10.21105/joss.02949},
    url = {https://doi.org/10.21105/joss.02949},
    year = {2021},
    publisher = {The Open Journal},
    volume = {6},
    number = {61},
    pages = {2949},
    author = {Luka Peฤnik and Iztok Fister},
    title = {NiaAML: AutoML framework based on stochastic population-based nature-inspired algorithms},
    journal = {Journal of Open Source Software} 
} 
```

L. Peฤnik, I. Fister Jr. "[NiaAML: AutoML framework based on stochastic population-based nature-inspired algorithms](https://joss.theoj.org/papers/10.21105/joss.02949)." Journal of Open Source Software 6.61 (2021): 2949.

```bibtex
@inproceedings{pecnik_niaaml2_2021,
	address = {Cham},
	title = {{NiaAML2}: {An} {Improved} {AutoML} {Using} {Nature}-{Inspired} {Algorithms}},
	isbn = {978-3-030-78811-7},
	abstract = {Using machine learning methods in the real-world is far from being easy, especially because of the number of methods on the one hand, and setting the optimal values of their parameters on the other. Therefore, a lot of so-called AutoML methods have emerged nowadays that also enable automatic construction of classification pipelines to users, who are not experts in this domain. In this study, the NiaAML2 method is proposed that is capable of constructing the classification pipelines using nature-inspired algorithms in two phases: pipeline construction, and hyper-parameter optimization. This method improves the original NiaAML capable of this construction in one phase. The algorithm was applied to four UCI ML datasets, while the obtained results encouraged us to continue with the research.},
	booktitle = {Advances in {Swarm} {Intelligence}},
	publisher = {Springer International Publishing},
	author = {Peฤnik, Luka and Fister, Iztok and Fister, Iztok},
	editor = {Tan, Ying and Shi, Yuhui},
	year = {2021},
	pages = {243--252},
}
```

L. Peฤnik, Fister, I., Fister, I. Jr. [NiaAML2: An Improved AutoML Using Nature-Inspired Algorithms](https://doi.org/10.1007/978-3-030-78811-7_23). In International Conference on Swarm Intelligence (pp. 243-252). Springer, Cham, 2021.


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/firefly-cpp/NiaAML",
    "name": "NiaAML",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": "classification, NiaPy, scikit-learn, nature-inspired algorithms, feature selection, preprocessing",
    "author": "Luka Pe\u010dnik",
    "author_email": "lukapecnik96@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/b2/24/e871445774de87d5a9996b5e30362fb3c7ff027c25d1f42cdd979dc47e78/niaaml-2.1.0.tar.gz",
    "platform": null,
    "description": "<p align=\"center\"><img src=\".github/images/niaaml_logo.png\" alt=\"NiaAML\" title=\"NiaAML\"/></p>\n\n<h1 align=\"center\">\n    \ud83c\udf33 NiaAML\n</h1>\n\n<p align=\"center\">\n    <img alt=\"PyPI Version\" src=\"https://img.shields.io/pypi/v/niaaml.svg\" href=\"https://pypi.python.org/pypi/niaaml\">\n    <img alt=\"PyPI - Python Version\" src=\"https://img.shields.io/pypi/pyversions/niaaml.svg\">\n    <img alt=\"PyPI - Downloads\" src=\"https://img.shields.io/pypi/dm/niaaml.svg\" href=\"https://pepy.tech/project/niaaml\">\n    <a href=\"https://repology.org/project/python:niaaml/versions\">\n        <img src=\"https://repology.org/badge/tiny-repos/python:niaaml.svg\" alt=\"Packaging status\">\n    </a>\n    <img alt=\"Downloads\" src=\"https://pepy.tech/badge/niaaml\">\n    <img alt=\"GitHub license\" src=\"https://img.shields.io/github/license/lukapecnik/niaaml.svg\" href=\"https://github.com/lukapecnik/niaaml/blob/master/LICENSE\">\n    <img alt=\"build\" src=\"https://github.com/lukapecnik/niaaml/actions/workflows/test.yml/badge.svg\">\n    <img alt=\"Coverage Status\" src=\"https://coveralls.io/repos/github/lukapecnik/NiaAML/badge.svg?branch=master\" href=\"https://coveralls.io/github/lukapecnik/NiaAML?branch=master\">\n    <img alt=\"Documentation Status\" src=\"https://readthedocs.org/projects/niaaml/badge/?version=latest\" href=\"https://niaaml.readthedocs.io/en/latest/?badge=latest\">\n</p>\n\n<p align=\"center\">\n    <img alt=\"GitHub commit activity\" src=\"https://img.shields.io/github/commit-activity/w/lukapecnik/niaaml.svg\">\n    <img alt=\"Average time to resolve an issue\" src=\"http://isitmaintained.com/badge/resolution/lukapecnik/niaaml.svg\" href=\"http://isitmaintained.com/project/lukapecnik/niaaml\">\n    <img alt=\"Percentage of issues still open\" src=\"http://isitmaintained.com/badge/open/lukapecnik/niaaml.svg\" href=\"http://isitmaintained.com/project/lukapecnik/niaaml\">\n    <img alt=\"GitHub contributors\" src=\"https://img.shields.io/github/contributors/lukapecnik/niaaml.svg\">\n</p>\n\n<p align=\"center\">\n    <img alt=\"DOI\" src=\"https://zenodo.org/badge/289322337.svg\" href=\"https://zenodo.org/badge/latestdoi/289322337\">\n    <img alt=\"DOI\" src=\"https://joss.theoj.org/papers/10.21105/joss.02949/status.svg\" href=\"https://doi.org/10.21105/joss.02949\">\n</p>\n\n<p align=\"center\">\n  <a href=\"https://github.com/firefly-cpp/NiaAML?tab=readme-ov-file#-installation\">\ud83d\udce6 Installation</a> \u2022\n  <a href=\"https://github.com/firefly-cpp/NiaAML?tab=readme-ov-file#-graphical-user-interface\">\ud83d\udcbb Graphical User Interface</a> \u2022\n  <a href=\"https://github.com/firefly-cpp/NiaAML?tab=readme-ov-file#-command-line-interface\">\ud83e\uddd1\u200d\ud83d\udcbb Command Line Interface</a> \u2022\n  <a href=\"https://github.com/firefly-cpp/NiaAML?tab=readme-ov-file#-api\">\ud83d\udcee API</a> \u2022\n  <a href=\"https://github.com/firefly-cpp/NiaAML?tab=readme-ov-file#-implemented-components\">\u2728 Implemented Components</a> \u2022\n  <a href=\"https://github.com/firefly-cpp/NiaAML?tab=readme-ov-file#-optimization-process-and-parameter-tuning\">\ud83d\udcaa Optimization Process And Parameter Tuning</a> \u2022\n  <a href=\"https://github.com/firefly-cpp/NiaAML?tab=readme-ov-file#-examples\">\ud83d\udcd3 Examples</a> \u2022\n  <a href=\"https://github.com/firefly-cpp/NiaAML?tab=readme-ov-file#-contributors\">\ud83e\udec2 Contributors</a> \u2022\n  <a href=\"https://github.com/firefly-cpp/NiaAML?tab=readme-ov-file#-support\">\ud83d\ude4f Support</a> \u2022\n  <a href=\"https://github.com/firefly-cpp/NiaAML?tab=readme-ov-file#-license\">\ud83d\udd11 License</a> \u2022\n  <a href=\"https://github.com/firefly-cpp/NiaAML?tab=readme-ov-file#-cite-us\">\ud83d\udcc4 Cite Us</a>\n</p>\n\nNiaAML is a framework for Automated Machine Learning based on nature-inspired algorithms for optimization. The framework is written fully in Python. The name NiaAML comes from the Automated Machine Learning method of the same name [[1]](#1). Its goal is to compose the best possible classification pipeline for the given task efficiently using components on the input. The components are divided into three groups: feature selection algorithms, feature transformation algorithms and classifiers. The framework uses nature-inspired algorithms for optimization to choose the best set of components for the classification pipeline, and optimize their hyperparameters. We use the <a href=\"https://github.com/NiaOrg/NiaPy\">NiaPy framework</a> for the optimization process, which is a popular Python collection of nature-inspired algorithms. The NiaAML framework is easy to use and customize or expand to suit your needs.\n\n> \ud83c\udd95\ud83d\udcc8 NiaAML now also support regression tasks. The package still refers to regressors as \"classifiers\" to avoid introducing a breaking change to the API.\n\nThe NiaAML framework allows you not only to run full pipeline optimization, but also to separate implemented components such as classifiers, feature selection algorithms, etc. **It supports numerical and categorical features as well as missing values in datasets.**\n\n* **Free software:** MIT license,\n* **Documentation:** https://niaaml.readthedocs.io/en/latest/,\n* **Python versions:** 3.9 | 3.10 | 3.11\n* **Dependencies:** [click](CONTRIBUTING.md#development-dependencies),\n* **Tested OS:** Windows, Ubuntu, Fedora, Linux Mint and CentOS. **However, that does not mean it does not work on others.**\n\n![NiaAML Architecture](.github/images/niaaml.png)\n\n---\n\n## \ud83d\udce6 Installation\n\n### pip3\n\nInstall NiaAML with pip3:\n\n```sh\npip3 install niaaml\n```\n\nIn case you would like to try out the latest pre-release version of the framework, install it using:\n\n```sh\npip3 install niaaml --pre\n```\n\n### Fedora Linux\n\nTo install NiaAML on Fedora, use:\n\n```sh\n$ dnf install python-niaaml\n```\n\n### Alpine Linux\n\nTo install NiaAML on Alpine Linux, please enable Community repository and use:\n\n```sh\n$ apk add py3-niaaml\n```\n\n### Arch Linux\n\nTo install NiaAML on Arch Linux, use:\n\n```sh\n$ yay -Syyu python-niaaml\n```\n\n### Nix\n\nTo install NiaAML with the [Nix package manager](https://search.nixos.org/packages?channel=23.11&show=python311Packages.niaaml), use:\n\n```sh\n$ nix-env -i python311Packages.niaaml\n```\n\nTo enter a shell with the package already installed, use:\n\n```sh\n$ nix-shell -p python311Packages.niaaml\n```\n\n## \ud83d\udcbb Graphical User Interface\n\nThere is a simple Graphical User Interface for the NiaAML package available [here](https://github.com/lukapecnik/NiaAML-GUI).\n\n## \ud83e\uddd1\u200d\ud83d\udcbb Command Line Interface\n\nWe also provide a CLI for quick pipeline optimizations and inference from the terminal without the need to write custom scripts.\n\nWhen you install the package as instructed above, you will already have access to the `niaaml` command with sub-commands `optimize` and `infer`\n\nFor usage information, add the `--help` flag:\n\n![niaaml help](.github/images/niaaml_cli_help.png)\n\n![niaaml infer help](.github/images/niaaml_cli_infer_help.png)\n\nAn example Invocation of `optimize`:\n\n![niaaml optimize example](.github/images/niaaml_cli_optimize_example.png)\n\n## \ud83d\udcee API\n\nThere is a simple API for remote work with NiaAML package available [here](https://github.com/alenrajsp/NiaAML-API).\n\n## \u2728 Implemented Components\n\n[Click here](COMPONENTS.md) for a list of currently implemented components divided into groups: classifiers, feature selection algorithms and feature transformation algorithms. At the end you can also see a list of currently implemented fitness functions for the optimization process, categorical features' encoders, and missing values' imputers. All of the components are passed into the optimization process using their class names. Let's say we want to choose between Adaptive Boosting, Bagging and Multi Layer Perceptron classifiers, Select K Best and Select Percentile feature selection algorithms and Normalizer as the feature transformation algorithm (may not be selected during the optimization process).\n\n```python\nPipelineOptimizer(\n    data=...,\n    classifiers=['AdaBoost', 'Bagging', 'MultiLayerPerceptron'],\n    feature_selection_algorithms=['SelectKBest', 'SelectPercentile'],\n    feature_transform_algorithms=['Normalizer']\n)\n```\n\nThe argument of the PipelineOptimizer `categorical_features_encoder` is `None` by default. If your dataset contains any categorical features, you need to specify an encoder to use. The same goes for `imputer` and features that contain missing values.\n\n```python\nPipelineOptimizer(\n    data=...,\n    classifiers=['AdaBoost', 'Bagging', 'MultiLayerPerceptron'],\n    feature_selection_algorithms=['SelectKBest', 'SelectPercentile'],\n    feature_transform_algorithms=['Normalizer'],\n    categorical_features_encoder='OneHotEncoder',\n    imputer='SimpleImputer'\n)\n```\n\nFor a full example see the [\ud83d\udcd3 Examples section](https://github.com/firefly-cpp/NiaAML/blob/master/README.md#-examples).\n\n## \ud83d\udcaa Optimization Process And Parameter Tuning\n\nIn the modifier version of NiaAML optimization process there are two types of optimization. The goal of the first type is to find an optimal set of components (feature selection algorithm, feature transformation algorithm and classifier). The next step is to find optimal parameters for the selected set of components, and that is the goal of the second type of optimization. Each component has an attribute `_params`, which is a dictionary of parameters and their possible values.\n\n```python\nself._params = dict(\n    n_estimators = ParameterDefinition(MinMax(min=10, max=111), np.uint),\n    algorithm = ParameterDefinition(['SAMME', 'SAMME.R'])\n)\n```\n\nAn individual in the first type of optimization is represented as a real-valued vector that has a size equal to the sum of the number of keys in all three dictionaries (classifier's `_params`, Feature Transformation algorithm's `_params` and feature selection algorithm's `_params`) and the value of each dimension is in the range [0.0, 1.0]. The second type of optimization maps real values from the individual's vector to those parameter definitions in the dictionaries. Each parameter's value can be defined as a range or array of values. In the first case, a value from a vector is mapped from one iterval to another, and in the second case, a value from the vector falls into one of the bins that represent an index of the array that holds possible parameters` values.\n\nLet's say we have a classifier with 3 parameters, a feature selection algorithm with 2 parameters and feature transformation algorithm with 4 parameters. The size of an individual in the second type of optimization is 9. The size of an individual in the first type of optimization is always 3 (1 classifier, 1 feature selection algorithm and 1 feature transformation algorithm).\n\nIn some cases we may want to tune a parameter that needs additional information for setting its range of values, so we cannot set the range in the initialization method. In that case, we should set its value in the dictionary to None and define it later in the process. The parameter will be a part of the parameter tuning process as soon as we define its possible values. For example, see [Select K Best Feature Selection](niaaml/preprocessing/feature_selection/select_k_best.py) and its parameter `k`.\n\n**The NiaAML framwork also supports running optimization according to the original method proposed in [[1]](#1) where the components selection and hyperparameter optimization steps are combined into one.**\n\n## \ud83d\udcd3 Examples\n\n### Example of Usage\n\nLoad data and try to find the optimal pipeline for the given components. The example below uses the Particle Swarm Algorithm as the optimization algorithm. You can find a list of all available algorithms in the <a href=\"https://github.com/NiaOrg/NiaPy\">NiaPy's repository</a>.\n\n```python\nfrom niaaml import PipelineOptimizer, Pipeline\nfrom niaaml.data import BasicDataReader\nimport numpy\nimport pandas\n\n# dummy random data\ndata_reader = BasicDataReader(\n    x=numpy.random.uniform(low=0.0, high=15.0, size=(50, 3)),\n    y=numpy.random.choice(['Class 1', 'Class 2'], size=50)\n)\n\npipeline_optimizer = PipelineOptimizer(\n    data=data_reader,\n    classifiers=['AdaBoost', 'Bagging', 'MultiLayerPerceptron', 'RandomForest', 'ExtremelyRandomizedTrees', 'LinearSVC'],\n    feature_selection_algorithms=['SelectKBest', 'SelectPercentile', 'ParticleSwarmOptimization', 'VarianceThreshold'],\n    feature_transform_algorithms=['Normalizer', 'StandardScaler']\n)\n\n# run the modified version of optimization\npipeline1 = pipeline_optimizer.run('Accuracy', 15, 15, 300, 300, 'ParticleSwarmAlgorithm', 'ParticleSwarmAlgorithm')\n\n# run the original version\npipeline2 = pipeline_optimizer.run_v1('Accuracy', 15, 400, 'ParticleSwarmAlgorithm')\n```\n\nYou can save a result of the optimization process as an object to a file for later use.\n\n```python\npipeline1.export('pipeline.ppln')\n```\n\nAnd also load it from a file and use the pipeline.\n\n```python\nloaded_pipeline = Pipeline.load('pipeline.ppln')\n\n# some features (can be loaded using DataReader object instances)\nx = pandas.DataFrame([[0.35, 0.46, 5.32], [0.16, 0.55, 12.5]])\ny = loaded_pipeline.run(x)\n```\n\nYou can also save a user-friendly representation of a pipeline to a text file.\n\n```python\npipeline1.export_text('pipeline.txt')\n```\n\nThis is a very simple example with dummy data. It is only intended to give you a basic idea of how to use the framework.\n\n### \ud83d\udcc8 Example of a Regression Task\n\nThe API for solving regression tasks is not different to the classification use-case. One only has to choose the right components that support regression:\n\nCurrently, the following components support regression tasks:\n\n\u27a1\ufe0f **Feature Transform Algorithms**:\n\n+ \"Normalizer\"\n+ \"StandardScaler\"\n+ \"MaxAbsScaler\"\n+ \"QuantileTransformer\"\n+ \"RobustScaler\"\n\n\ud83d\udd0e **Feature Selection Algorithms**:\n\n+ \"SelectKBest\"\n+ \"SelectPercentile\"\n+ \"SelectUnivariateRegression\"\n\n\ud83d\udd2e **Models (Classifiers)**:\n\n+ \"LinearRegression\"\n+ \"RidgeRegression\"\n+ \"LassoRegression\"\n+ \"DecisionTreeRegression\"\n+ \"GaussianProcessRegression\"\n\n```python\npipeline_optimizer = PipelineOptimizer(\n    data=data_reader,\n    feature_selection_algorithms=[\"SelectKBest\", \"SelectPercentile\", \"SelectUnivariateRegression\"],\n    feature_transform_algorithms=[\"Normalizer\", \"StandardScaler\"],\n    classifiers=[\"LinearRegression\", \"RidgeRegression\", \"LassoRegression\", \"DecisionTreeRegression\", \"GaussianProcessRegression\"],\n)\n\n# run the modified version of optimization\npipeline1 = pipeline_optimizer.run(\"MSE\", 10, 10, 20, 20, \"ParticleSwarmAlgorithm\")\n```\n\n### Example of a Pipeline Component's Implementation\n\nThe NiaAML framework is easily expandable, as you can implement components by overriding the base classes' methods. To implement a classifier you should inherit from the [Classifier](niaaml/classifiers/classifier.py) class, and you can do the same with [FeatureSelectionAlgorithm](niaaml/preprocessing/feature_selection/feature_selection_algorithm.py) and [FeatureTransformAlgorithm](niaaml/preprocessing/feature_transform/feature_transform_algorithm.py) classes. All of the mentioned classes inherit from the [PipelineComponent](niaaml/pipeline_component.py) class.\n\nTake a look at the [Classifier](niaaml/classifiers/classifier.py) class and the implementation of the [AdaBoost](niaaml/classifiers/ada_boost.py) classifier that inherits from it.\n\n### Example of a Fitness Function's Implementation\n\nThe NiaAML framework also allows you to implement your own fitness function. All you need to do is implement the [FitnessFunction](niaaml/fitness/fitness_function.py) class.\n\nTake a look at the [Accuracy](niaaml/fitness/accuracy.py) implementation.\n\n### Example of a Feature Encoder's Implementation\n\nThe NiaAML framework also allows you to implement your own feature encoder. All you need to do is implement the [FeatureEncoder](niaaml/preprocessing/encoding/feature_encoder.py) class.\n\nTake a look at the [OneHotEncoder](niaaml/preprocessing/encoding/one_hot_encoder.py) implementation.\n\n### Example of an Imputer's Implementation\n\nThe NiaAML framework also allows you to implement your own imputer. All you need to do is implement the [Imputer](niaaml/preprocessing/imputation/imputer.py) class.\n\nTake a look at the [SimpleImputer](niaaml/preprocessing/imputation/simple_imputer.py) implementation.\n\n### More\n\nYou can find more examples [here](examples).\n\n## \ud83e\udec2 Contributors\n\nThanks goes to these wonderful people ([emoji key](https://allcontributors.org/docs/en/emoji-key)):\n\n<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section -->\n<!-- prettier-ignore-start -->\n<!-- markdownlint-disable -->\n<table>\n  <tr>\n    <td align=\"center\"><a href=\"https://github.com/lukapecnik\"><img src=\"https://avatars0.githubusercontent.com/u/23029992?s=460&u=d1c802fd8c82af0a020b1e21af80a34d6e28fb10&v=4?s=100\" width=\"100px;\" alt=\"\"/><br /><sub><b>Luka Pe\u010dnik</b></sub></a><br /><a href=\"https://github.com/lukapecnik/NiaAML/commits?author=lukapecnik\" title=\"Code\">\ud83d\udcbb</a> <a href=\"https://github.com/lukapecnik/NiaAML/commits?author=lukapecnik\" title=\"Documentation\">\ud83d\udcd6</a> <a href=\"https://github.com/lukapecnik/NiaAML/pulls?q=is%3Apr+reviewed-by%3Alukapecnik\" title=\"Reviewed Pull Requests\">\ud83d\udc40</a> <a href=\"https://github.com/lukapecnik/NiaAML/issues?q=author%3Alukapecnik\" title=\"Bug reports\">\ud83d\udc1b</a> <a href=\"#example-lukapecnik\" title=\"Examples\">\ud83d\udca1</a> <a href=\"https://github.com/lukapecnik/NiaAML/commits?author=lukapecnik\" title=\"Tests\">\u26a0\ufe0f</a> <a href=\"#infra-lukapecnik\" title=\"Infrastructure (Hosting, Build-Tools, etc)\">\ud83d\ude87</a></td>\n    <td align=\"center\"><a href=\"https://github.com/firefly-cpp\"><img src=\"https://avatars2.githubusercontent.com/u/1633361?v=4?s=100\" width=\"100px;\" alt=\"\"/><br /><sub><b>firefly-cpp</b></sub></a><br /><a href=\"https://github.com/lukapecnik/NiaAML/commits?author=firefly-cpp\" title=\"Code\">\ud83d\udcbb</a> <a href=\"https://github.com/lukapecnik/NiaAML/issues?q=author%3Afirefly-cpp\" title=\"Bug reports\">\ud83d\udc1b</a> <a href=\"#mentoring-firefly-cpp\" title=\"Mentoring\">\ud83e\uddd1\u200d\ud83c\udfeb</a> <a href=\"#research-firefly-cpp\" title=\"Research\">\ud83d\udd2c</a> <a href=\"#ideas-firefly-cpp\" title=\"Ideas, Planning, & Feedback\">\ud83e\udd14</a></td>\n    <td align=\"center\"><a href=\"https://github.com/sisco0\"><img src=\"https://avatars0.githubusercontent.com/u/25695302?v=4?s=100\" width=\"100px;\" alt=\"\"/><br /><sub><b>sisco0</b></sub></a><br /><a href=\"#ideas-sisco0\" title=\"Ideas, Planning, & Feedback\">\ud83e\udd14</a></td>\n    <td align=\"center\"><a href=\"https://github.com/zStupan\"><img src=\"https://avatars.githubusercontent.com/u/48752988?v=4?s=100\" width=\"100px;\" alt=\"\"/><br /><sub><b>zStupan</b></sub></a><br /><a href=\"https://github.com/lukapecnik/NiaAML/commits?author=zStupan\" title=\"Code\">\ud83d\udcbb</a></td>\n    <td align=\"center\"><a href=\"https://github.com/musicinmybrain\"><img src=\"https://avatars.githubusercontent.com/u/6898909?v=4?s=100\" width=\"100px;\" alt=\"\"/><br /><sub><b>Ben Beasley</b></sub></a><br /><a href=\"https://github.com/lukapecnik/NiaAML/commits?author=musicinmybrain\" title=\"Code\">\ud83d\udcbb</a> <a href=\"#infra-musicinmybrain\" title=\"Infrastructure (Hosting, Build-Tools, etc)\">\ud83d\ude87</a></td>\n    <td align=\"center\"><a href=\"https://github.com/LaurenzBeck\"><img src=\"https://avatars.githubusercontent.com/u/16887213?v=4?s=100\" width=\"100px;\" alt=\"\"/><br /><sub><b>Laurenz Farthofer</b></sub></a><br /><a href=\"https://github.com/lukapecnik/NiaAML/commits?author=laurenzbeck\" title=\"Code\">\ud83d\udcbb</a> <a href=\"https://github.com/lukapecnik/NiaAML/commits?author=laurenzbeck\" title=\"Documentation\">\ud83d\udcd6</a> <a href=\"https://github.com/lukapecnik/NiaAML/commits?author=laurenzbeck\" title=\"Infrastructure (Hosting, Build-Tools, etc)\">\ud83d\ude87</a></td>\n  </tr>\n</table>\n\n<!-- markdownlint-restore -->\n<!-- prettier-ignore-end -->\n\n<!-- ALL-CONTRIBUTORS-LIST:END -->\n\nThis project follows the [all-contributors](https://github.com/all-contributors/all-contributors) specification. Contributions of any kind are welcome!\n\n## \ud83d\ude47 Contributing\n\nWe encourage you to contribute to NiaAML! Please check out the [Contributing to NiaAML guide](CONTRIBUTING.md) for guidelines about how to proceed.\n\nEveryone interacting in NiaAML's codebases, issue trackers, chat rooms and mailing lists is expected to follow the NiaAML [code of conduct](CODE_OF_CONDUCT.md).\n\n## \ud83d\ude4f Support\n\n### \u2753 Usage Questions\n\nIf you have questions about how to use NiaAML, or have an issue that isn\u2019t related to a bug, you can place a question on [StackOverflow](https://stackoverflow.com/).\n\nYou can also seek support via [email](mailto:lukapecnik96@gmail.com)\n\nNiaAML is a community supported package, nobody is paid to develop package nor to handle NiaAML support.\n\n**All people answering your questions are doing it with their own time, so please be kind and provide as much information as possible.**\n\n## \u2757 Issues\n\nBefore creating bug reports, please check existing issues list as you might find out that you don't need to create one. When you are creating a bug report, please include as many details as possible in the [issue template](.github/templates/ISSUE_TEMPLATE.md).\n\n## \ud83d\udd11 Licence\n\nThis package is distributed under the MIT License. This license can be found online at <http://www.opensource.org/licenses/MIT>.\n\n## Disclaimer\n\nThis framework is provided as-is, and there are no guarantees that it fits your purposes or that it is bug-free. Use it at your own risk!\n\n## \ud83d\udcdd References\n\n<a id=\"1\">[1]</a> Iztok Fister Jr., Milan Zorman, Du\u0161an Fister, Iztok Fister. <a href=\"https://link.springer.com/chapter/10.1007%2F978-981-15-2133-1_13\">Continuous optimizers for automatic design and evaluation of classification pipelines</a>. In: Frontier applications of nature inspired computation. Springer tracts in nature-inspired computing, pp.281-301, 2020.\n\n## \ud83d\udcc4 Cite us\n\n```bibtex\n@article{Pe\u010dnik2021,\n    doi = {10.21105/joss.02949},\n    url = {https://doi.org/10.21105/joss.02949},\n    year = {2021},\n    publisher = {The Open Journal},\n    volume = {6},\n    number = {61},\n    pages = {2949},\n    author = {Luka Pe\u010dnik and Iztok Fister},\n    title = {NiaAML: AutoML framework based on stochastic population-based nature-inspired algorithms},\n    journal = {Journal of Open Source Software} \n} \n```\n\nL. Pe\u010dnik, I. Fister Jr. \"[NiaAML: AutoML framework based on stochastic population-based nature-inspired algorithms](https://joss.theoj.org/papers/10.21105/joss.02949).\" Journal of Open Source Software 6.61 (2021): 2949.\n\n```bibtex\n@inproceedings{pecnik_niaaml2_2021,\n\taddress = {Cham},\n\ttitle = {{NiaAML2}: {An} {Improved} {AutoML} {Using} {Nature}-{Inspired} {Algorithms}},\n\tisbn = {978-3-030-78811-7},\n\tabstract = {Using machine learning methods in the real-world is far from being easy, especially because of the number of methods on the one hand, and setting the optimal values of their parameters on the other. Therefore, a lot of so-called AutoML methods have emerged nowadays that also enable automatic construction of classification pipelines to users, who are not experts in this domain. In this study, the NiaAML2 method is proposed that is capable of constructing the classification pipelines using nature-inspired algorithms in two phases: pipeline construction, and hyper-parameter optimization. This method improves the original NiaAML capable of this construction in one phase. The algorithm was applied to four UCI ML datasets, while the obtained results encouraged us to continue with the research.},\n\tbooktitle = {Advances in {Swarm} {Intelligence}},\n\tpublisher = {Springer International Publishing},\n\tauthor = {Pe\u010dnik, Luka and Fister, Iztok and Fister, Iztok},\n\teditor = {Tan, Ying and Shi, Yuhui},\n\tyear = {2021},\n\tpages = {243--252},\n}\n```\n\nL. Pe\u010dnik, Fister, I., Fister, I. Jr. [NiaAML2: An Improved AutoML Using Nature-Inspired Algorithms](https://doi.org/10.1007/978-3-030-78811-7_23). In International Conference on Swarm Intelligence (pp. 243-252). Springer, Cham, 2021.\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Python automated machine learning framework",
    "version": "2.1.0",
    "project_urls": {
        "Documentation": "https://niaaml.readthedocs.io/en/latest/",
        "Homepage": "https://github.com/firefly-cpp/NiaAML",
        "Repository": "https://github.com/firefly-cpp/NiaAML"
    },
    "split_keywords": [
        "classification",
        " niapy",
        " scikit-learn",
        " nature-inspired algorithms",
        " feature selection",
        " preprocessing"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9f35f54790354c2c8c0079e9e37bfb527768c362c73efcbe7c07444e7730bcbf",
                "md5": "233a46347c4a1520aae193e685d59ce5",
                "sha256": "4f889bb66fb94e37a97c7795f87a23b994afb3de793226575e9fad62399e4889"
            },
            "downloads": -1,
            "filename": "niaaml-2.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "233a46347c4a1520aae193e685d59ce5",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 77393,
            "upload_time": "2024-06-12T12:19:09",
            "upload_time_iso_8601": "2024-06-12T12:19:09.585843Z",
            "url": "https://files.pythonhosted.org/packages/9f/35/f54790354c2c8c0079e9e37bfb527768c362c73efcbe7c07444e7730bcbf/niaaml-2.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b224e871445774de87d5a9996b5e30362fb3c7ff027c25d1f42cdd979dc47e78",
                "md5": "5d82cd5c82de647d672ae9bffe2c3e91",
                "sha256": "48073524c0448a006fbaf88df52a3ea0c4c07ff3a54e3330bf7e313623120873"
            },
            "downloads": -1,
            "filename": "niaaml-2.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "5d82cd5c82de647d672ae9bffe2c3e91",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 44805,
            "upload_time": "2024-06-12T12:19:11",
            "upload_time_iso_8601": "2024-06-12T12:19:11.825105Z",
            "url": "https://files.pythonhosted.org/packages/b2/24/e871445774de87d5a9996b5e30362fb3c7ff027c25d1f42cdd979dc47e78/niaaml-2.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-12 12:19:11",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "firefly-cpp",
    "github_project": "NiaAML",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "niaaml"
}
        
Elapsed time: 0.24836s