<p align="center"><img src=".github/images/niaclass_logo.png" alt="NiaClass" title="NiaClass"/></p>
---
[![PyPI Version](https://img.shields.io/pypi/v/niaclass.svg)](https://pypi.python.org/pypi/niaclass)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/niaclass.svg)
![PyPI - Downloads](https://img.shields.io/pypi/dm/niaclass.svg)
[![GitHub license](https://img.shields.io/github/license/lukapecnik/niaclass.svg)](https://github.com/lukapecnik/niaclass/blob/master/LICENSE)
![GitHub commit activity](https://img.shields.io/github/commit-activity/w/lukapecnik/niaclass.svg)
[![Average time to resolve an issue](http://isitmaintained.com/badge/resolution/lukapecnik/niaclass.svg)](http://isitmaintained.com/project/lukapecnik/niaclass "Average time to resolve an issue")
[![Percentage of issues still open](http://isitmaintained.com/badge/open/lukapecnik/niaclass.svg)](http://isitmaintained.com/project/lukapecnik/niaclass "Percentage of issues still open")
![GitHub contributors](https://img.shields.io/github/contributors/lukapecnik/niaclass.svg)
NiaClass is a framework for solving classification tasks using nature-inspired algorithms. The framework is written fully in Python. Its goal is to find the best possible set of classification rules for the input data using the <a href="https://github.com/NiaOrg/NiaPy">NiaPy framework</a>, which is a popular Python collection of nature-inspired algorithms. The NiaClass classifier supports numerical and categorical features.
* **Free software:** MIT license,
* **Documentation:** https://niaclass.readthedocs.io/en/latest/,
* **Python versions:** 3.7.x, 3.8.x, 3.9.x.
<p align="center"><img src=".github/images/niaclass.png" alt="NiaClass" title="NiaClass"/></p>
## Installation
### pip3
Install NiaClass with pip3:
```sh
pip3 install niaclass
```
In case you would like to try out the latest pre-release version of the framework, install it using:
```sh
pip3 install niaclass --pre
```
### Fedora Linux
To install NiaClass on Fedora, use:
```sh
$ dnf install python-niaclass
```
## Functionalities
- Binary classification,
- Multi-class classification,
- Support for numerical and categorical features.
## Examples
Usage examples can be found [here](examples).
## Reference Papers (software is based on ideas from):
[1] Iztok Fister Jr., Iztok Fister, Dušan Fister, Grega Vrbančič, Vili Podgorelec. [On the potential of the nature-inspired algorithms for pure binary classification](http://www.iztok-jr-fister.eu/static/publications/267.pdf). In. Computational science - ICCS 2020 : 20th International Conference, Proceedings. Part V. Cham: Springer, pp. 18-28. Lecture notes in computer science, 12141, 2020
## Licence
This package is distributed under the MIT License. This license can be found online at <http://www.opensource.org/licenses/MIT>.
## Disclaimer
This framework is provided as-is, and there are no guarantees that it fits your purposes or that it is bug-free. Use it at your own risk!
## Cite us
Pečnik L., Fister I., Fister Jr. I. (2021) NiaClass: Building Rule-Based Classification Models Using Nature-Inspired Algorithms. In: Tan Y., Shi Y. (eds) Advances in Swarm Intelligence. ICSI 2021. Lecture Notes in Computer Science, vol 12690. Springer, Cham.
Raw data
{
"_id": null,
"home_page": "https://github.com/lukapecnik/NiaClass",
"name": "niaclass",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.9,<4.0",
"maintainer_email": "",
"keywords": "classification,NiaPy,nature-inspired algorithms",
"author": "Luka Pe\u010dnik",
"author_email": "lukapecnik96@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/fa/1a/f67beb76b364227f20fb51225f4b36e324440506cff12ce8dc772c39e42f/niaclass-0.1.4.tar.gz",
"platform": null,
"description": "<p align=\"center\"><img src=\".github/images/niaclass_logo.png\" alt=\"NiaClass\" title=\"NiaClass\"/></p>\n\n---\n\n[![PyPI Version](https://img.shields.io/pypi/v/niaclass.svg)](https://pypi.python.org/pypi/niaclass)\n![PyPI - Python Version](https://img.shields.io/pypi/pyversions/niaclass.svg)\n![PyPI - Downloads](https://img.shields.io/pypi/dm/niaclass.svg)\n[![GitHub license](https://img.shields.io/github/license/lukapecnik/niaclass.svg)](https://github.com/lukapecnik/niaclass/blob/master/LICENSE)\n![GitHub commit activity](https://img.shields.io/github/commit-activity/w/lukapecnik/niaclass.svg)\n[![Average time to resolve an issue](http://isitmaintained.com/badge/resolution/lukapecnik/niaclass.svg)](http://isitmaintained.com/project/lukapecnik/niaclass \"Average time to resolve an issue\")\n[![Percentage of issues still open](http://isitmaintained.com/badge/open/lukapecnik/niaclass.svg)](http://isitmaintained.com/project/lukapecnik/niaclass \"Percentage of issues still open\")\n![GitHub contributors](https://img.shields.io/github/contributors/lukapecnik/niaclass.svg)\n\nNiaClass is a framework for solving classification tasks using nature-inspired algorithms. The framework is written fully in Python. Its goal is to find the best possible set of classification rules for the input data using the <a href=\"https://github.com/NiaOrg/NiaPy\">NiaPy framework</a>, which is a popular Python collection of nature-inspired algorithms. The NiaClass classifier supports numerical and categorical features.\n\n* **Free software:** MIT license,\n* **Documentation:** https://niaclass.readthedocs.io/en/latest/,\n* **Python versions:** 3.7.x, 3.8.x, 3.9.x.\n\n<p align=\"center\"><img src=\".github/images/niaclass.png\" alt=\"NiaClass\" title=\"NiaClass\"/></p>\n\n## Installation\n\n### pip3\n\nInstall NiaClass with pip3:\n\n```sh\npip3 install niaclass\n```\n\nIn case you would like to try out the latest pre-release version of the framework, install it using:\n\n```sh\npip3 install niaclass --pre\n```\n\n### Fedora Linux\n\nTo install NiaClass on Fedora, use:\n\n```sh\n$ dnf install python-niaclass\n```\n\n## Functionalities\n\n- Binary classification,\n- Multi-class classification,\n- Support for numerical and categorical features.\n\n## Examples\n\nUsage examples can be found [here](examples).\n\n## Reference Papers (software is based on ideas from):\n\n[1] Iztok Fister Jr., Iztok Fister, Du\u0161an Fister, Grega Vrban\u010di\u010d, Vili Podgorelec. [On the potential of the nature-inspired algorithms for pure binary classification](http://www.iztok-jr-fister.eu/static/publications/267.pdf). In. Computational science - ICCS 2020 : 20th International Conference, Proceedings. Part V. Cham: Springer, pp. 18-28. Lecture notes in computer science, 12141, 2020\n\n## Licence\n\nThis package is distributed under the MIT License. This license can be found online at <http://www.opensource.org/licenses/MIT>.\n\n## Disclaimer\n\nThis framework is provided as-is, and there are no guarantees that it fits your purposes or that it is bug-free. Use it at your own risk!\n\n## Cite us\n\nPe\u010dnik L., Fister I., Fister Jr. I. (2021) NiaClass: Building Rule-Based Classification Models Using Nature-Inspired Algorithms. In: Tan Y., Shi Y. (eds) Advances in Swarm Intelligence. ICSI 2021. Lecture Notes in Computer Science, vol 12690. Springer, Cham.\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Python framework for building classifiers using nature-inspired algorithms",
"version": "0.1.4",
"split_keywords": [
"classification",
"niapy",
"nature-inspired algorithms"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a7b057d767d983ce3e5c68f73e7326bf5ede094e1e0b5b4d0cae293fe412313a",
"md5": "536ca5511cb96743af8984b76ccfd87d",
"sha256": "fe6a7c0ac24a6c9f079b1c3b9fda3ebd06f6f2babcfe3ae5d0079a9e5d056ca2"
},
"downloads": -1,
"filename": "niaclass-0.1.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "536ca5511cb96743af8984b76ccfd87d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9,<4.0",
"size": 8784,
"upload_time": "2023-02-07T09:19:07",
"upload_time_iso_8601": "2023-02-07T09:19:07.782237Z",
"url": "https://files.pythonhosted.org/packages/a7/b0/57d767d983ce3e5c68f73e7326bf5ede094e1e0b5b4d0cae293fe412313a/niaclass-0.1.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "fa1af67beb76b364227f20fb51225f4b36e324440506cff12ce8dc772c39e42f",
"md5": "a29f72903db7d93054dd3ae6ceb3af34",
"sha256": "7114b0d576a89f0fbfb47633f50ed75c090b666c7ca622af67b53fc28b434045"
},
"downloads": -1,
"filename": "niaclass-0.1.4.tar.gz",
"has_sig": false,
"md5_digest": "a29f72903db7d93054dd3ae6ceb3af34",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9,<4.0",
"size": 9140,
"upload_time": "2023-02-07T09:19:09",
"upload_time_iso_8601": "2023-02-07T09:19:09.888913Z",
"url": "https://files.pythonhosted.org/packages/fa/1a/f67beb76b364227f20fb51225f4b36e324440506cff12ce8dc772c39e42f/niaclass-0.1.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-02-07 09:19:09",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "lukapecnik",
"github_project": "NiaClass",
"travis_ci": true,
"coveralls": false,
"github_actions": false,
"lcname": "niaclass"
}