niaclass


Nameniaclass JSON
Version 0.2.2 PyPI version JSON
download
home_pagehttps://github.com/firefly-cpp/NiaClass
SummaryPython framework for building classifiers using nature-inspired algorithms
upload_time2024-12-05 19:16:52
maintainerNone
docs_urlNone
authorLuka Pečnik
requires_python<4.0,>=3.9
licenseMIT
keywords classification machine learning niapy nature-inspired algorithms optimization
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            <p align="center">
    <img src=".github/images/niaclass_logo.png" alt="NiaClass" title="NiaClass"/>
</p>

<p align="center">
    <a href="https://pypi.python.org/pypi/niaclass">
        <img alt="PyPI Version" src="https://img.shields.io/pypi/v/niaclass.svg" />
    </a>
    <img alt="PyPI - Python Version" src="https://img.shields.io/pypi/pyversions/niaclass.svg" />
    <img alt="PyPI - Downloads" src="https://img.shields.io/pypi/dm/niaclass.svg" />
    <a href="https://github.com/lukapecnik/niaclass/blob/master/LICENSE">
        <img alt="GitHub license" src="https://img.shields.io/github/license/lukapecnik/niaclass.svg">
    </a>
</p>

<p align="center">
    <img alt="GitHub commit activity" src="https://img.shields.io/github/commit-activity/w/lukapecnik/niaclass.svg" />
    <a href="http://isitmaintained.com/project/lukapecnik/niaclass">
        <img alt="Average time to resolve an issue" src="http://isitmaintained.com/badge/resolution/lukapecnik/niaclass.svg" />
    </a>
    <a href="http://isitmaintained.com/project/lukapecnik/niaclass">
        <img alt="Percentage of issues still open" src="http://isitmaintained.com/badge/open/lukapecnik/niaclass.svg" />
    </a>
    <img alt="GitHub contributors" src="https://img.shields.io/github/contributors/lukapecnik/niaclass.svg" />
</p>

<p align="center">
    <a href="#-installation">📦 Installation</a> •
    <a href="#-functionalities">✨ Functionalities</a> •
    <a href="#-examples">🚀 Examples</a> •
    <a href="#-reference-papers">📝 Reference papers</a> •
    <a href="#-license">🔑 License</a> •
    <a href="#-cite-us">📄 Cite us</a>
</p>

NiaClass is a framework for solving classification tasks using nature-inspired algorithms. The framework is written fully in Python. Its goal is to find the best possible set of classification rules for the input data using the <a href="https://github.com/NiaOrg/NiaPy">NiaPy framework</a>, which is a popular Python collection of nature-inspired algorithms. The NiaClass classifier supports numerical and categorical features.

* **Free software:** MIT license
* **Documentation:** https://niaclass.readthedocs.io/en/latest
* **Python versions:** 3.7.x, 3.8.x, 3.9.x

<p align="center"><img src=".github/images/niaclass.png" alt="NiaClass" title="NiaClass"/></p>

## 📦 Installation

### pip3

To install NiaClass with pip3, use:

```sh
pip3 install niaclass
```

In case you would like to try out the latest pre-release version of the framework, install it using:

```sh
pip3 install niaclass --pre
```

### Fedora Linux

To install NiaClass on Fedora, use:

```sh
$ dnf install python-niaclass
```

## ✨ Functionalities

- Binary classification,
- Multi-class classification,
- Support for numerical and categorical features.

## 🚀 Examples

Usage examples can be found [here](examples).

## 📝 Reference papers

[1] Iztok Fister Jr., Iztok Fister, Dušan Fister, Grega Vrbančič, Vili Podgorelec. [On the potential of the nature-inspired algorithms for pure binary classification](http://www.iztok-jr-fister.eu/static/publications/267.pdf). In. Computational science - ICCS 2020 : 20th International Conference, Proceedings. Part V. Cham: Springer, pp. 18-28. Lecture notes in computer science, 12141, 2020

## 🔑 License

This package is distributed under the MIT License. This license can be found online at <http://www.opensource.org/licenses/MIT>.

## Disclaimer

This framework is provided as-is, and there are no guarantees that it fits your purposes or that it is bug-free. Use it at your own risk!

## 📄 Cite us

Pečnik L., Fister I., Fister Jr. I. (2021) [NiaClass: Building Rule-Based Classification Models Using Nature-Inspired Algorithms](https://iztok-jr-fister.eu/static/publications/291.pdf). In: Tan Y., Shi Y. (eds) Advances in Swarm Intelligence. ICSI 2021. Lecture Notes in Computer Science, vol 12690. Springer, Cham.


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/firefly-cpp/NiaClass",
    "name": "niaclass",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": "classification, machine learning, NiaPy, nature-inspired algorithms, optimization",
    "author": "Luka Pe\u010dnik",
    "author_email": "lukapecnik96@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/78/fb/4aa88eaa33dbbb2825b01384b6f41a0f3162e7c71582470b3aea007fd8a7/niaclass-0.2.2.tar.gz",
    "platform": null,
    "description": "<p align=\"center\">\n    <img src=\".github/images/niaclass_logo.png\" alt=\"NiaClass\" title=\"NiaClass\"/>\n</p>\n\n<p align=\"center\">\n    <a href=\"https://pypi.python.org/pypi/niaclass\">\n        <img alt=\"PyPI Version\" src=\"https://img.shields.io/pypi/v/niaclass.svg\" />\n    </a>\n    <img alt=\"PyPI - Python Version\" src=\"https://img.shields.io/pypi/pyversions/niaclass.svg\" />\n    <img alt=\"PyPI - Downloads\" src=\"https://img.shields.io/pypi/dm/niaclass.svg\" />\n    <a href=\"https://github.com/lukapecnik/niaclass/blob/master/LICENSE\">\n        <img alt=\"GitHub license\" src=\"https://img.shields.io/github/license/lukapecnik/niaclass.svg\">\n    </a>\n</p>\n\n<p align=\"center\">\n    <img alt=\"GitHub commit activity\" src=\"https://img.shields.io/github/commit-activity/w/lukapecnik/niaclass.svg\" />\n    <a href=\"http://isitmaintained.com/project/lukapecnik/niaclass\">\n        <img alt=\"Average time to resolve an issue\" src=\"http://isitmaintained.com/badge/resolution/lukapecnik/niaclass.svg\" />\n    </a>\n    <a href=\"http://isitmaintained.com/project/lukapecnik/niaclass\">\n        <img alt=\"Percentage of issues still open\" src=\"http://isitmaintained.com/badge/open/lukapecnik/niaclass.svg\" />\n    </a>\n    <img alt=\"GitHub contributors\" src=\"https://img.shields.io/github/contributors/lukapecnik/niaclass.svg\" />\n</p>\n\n<p align=\"center\">\n    <a href=\"#-installation\">\ud83d\udce6 Installation</a> \u2022\n    <a href=\"#-functionalities\">\u2728 Functionalities</a> \u2022\n    <a href=\"#-examples\">\ud83d\ude80 Examples</a> \u2022\n    <a href=\"#-reference-papers\">\ud83d\udcdd Reference papers</a> \u2022\n    <a href=\"#-license\">\ud83d\udd11 License</a> \u2022\n    <a href=\"#-cite-us\">\ud83d\udcc4 Cite us</a>\n</p>\n\nNiaClass is a framework for solving classification tasks using nature-inspired algorithms. The framework is written fully in Python. Its goal is to find the best possible set of classification rules for the input data using the <a href=\"https://github.com/NiaOrg/NiaPy\">NiaPy framework</a>, which is a popular Python collection of nature-inspired algorithms. The NiaClass classifier supports numerical and categorical features.\n\n* **Free software:** MIT license\n* **Documentation:** https://niaclass.readthedocs.io/en/latest\n* **Python versions:** 3.7.x, 3.8.x, 3.9.x\n\n<p align=\"center\"><img src=\".github/images/niaclass.png\" alt=\"NiaClass\" title=\"NiaClass\"/></p>\n\n## \ud83d\udce6 Installation\n\n### pip3\n\nTo install NiaClass with pip3, use:\n\n```sh\npip3 install niaclass\n```\n\nIn case you would like to try out the latest pre-release version of the framework, install it using:\n\n```sh\npip3 install niaclass --pre\n```\n\n### Fedora Linux\n\nTo install NiaClass on Fedora, use:\n\n```sh\n$ dnf install python-niaclass\n```\n\n## \u2728 Functionalities\n\n- Binary classification,\n- Multi-class classification,\n- Support for numerical and categorical features.\n\n## \ud83d\ude80 Examples\n\nUsage examples can be found [here](examples).\n\n## \ud83d\udcdd Reference papers\n\n[1] Iztok Fister Jr., Iztok Fister, Du\u0161an Fister, Grega Vrban\u010di\u010d, Vili Podgorelec. [On the potential of the nature-inspired algorithms for pure binary classification](http://www.iztok-jr-fister.eu/static/publications/267.pdf). In. Computational science - ICCS 2020 : 20th International Conference, Proceedings. Part V. Cham: Springer, pp. 18-28. Lecture notes in computer science, 12141, 2020\n\n## \ud83d\udd11 License\n\nThis package is distributed under the MIT License. This license can be found online at <http://www.opensource.org/licenses/MIT>.\n\n## Disclaimer\n\nThis framework is provided as-is, and there are no guarantees that it fits your purposes or that it is bug-free. Use it at your own risk!\n\n## \ud83d\udcc4 Cite us\n\nPe\u010dnik L., Fister I., Fister Jr. I. (2021) [NiaClass: Building Rule-Based Classification Models Using Nature-Inspired Algorithms](https://iztok-jr-fister.eu/static/publications/291.pdf). In: Tan Y., Shi Y. (eds) Advances in Swarm Intelligence. ICSI 2021. Lecture Notes in Computer Science, vol 12690. Springer, Cham.\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Python framework for building classifiers using nature-inspired algorithms",
    "version": "0.2.2",
    "project_urls": {
        "Homepage": "https://github.com/firefly-cpp/NiaClass",
        "Repository": "https://github.com/firefly-cpp/NiaClass"
    },
    "split_keywords": [
        "classification",
        " machine learning",
        " niapy",
        " nature-inspired algorithms",
        " optimization"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b963547e476c2e4ec1c639f356b318cdef8bd4b6b24600d8f16cb08dcef034e5",
                "md5": "86d453ab429d37c18f4cd346b8b7eb1f",
                "sha256": "6d9dcc85dc9154f6b1634a5925f77885750c96110070884d917c1b5a276f7d2d"
            },
            "downloads": -1,
            "filename": "niaclass-0.2.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "86d453ab429d37c18f4cd346b8b7eb1f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 9269,
            "upload_time": "2024-12-05T19:16:51",
            "upload_time_iso_8601": "2024-12-05T19:16:51.292131Z",
            "url": "https://files.pythonhosted.org/packages/b9/63/547e476c2e4ec1c639f356b318cdef8bd4b6b24600d8f16cb08dcef034e5/niaclass-0.2.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "78fb4aa88eaa33dbbb2825b01384b6f41a0f3162e7c71582470b3aea007fd8a7",
                "md5": "4470390683871cf0c12f4fb732d2a68b",
                "sha256": "15c27d5481ab2f27fe037ca64e09cc7e475cd55556941a18e0ed712c79054eed"
            },
            "downloads": -1,
            "filename": "niaclass-0.2.2.tar.gz",
            "has_sig": false,
            "md5_digest": "4470390683871cf0c12f4fb732d2a68b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 9386,
            "upload_time": "2024-12-05T19:16:52",
            "upload_time_iso_8601": "2024-12-05T19:16:52.762200Z",
            "url": "https://files.pythonhosted.org/packages/78/fb/4aa88eaa33dbbb2825b01384b6f41a0f3162e7c71582470b3aea007fd8a7/niaclass-0.2.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-05 19:16:52",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "firefly-cpp",
    "github_project": "NiaClass",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": true,
    "lcname": "niaclass"
}
        
Elapsed time: 0.71825s