<p align="center">
<img src=".github/images/niaclass_logo.png" alt="NiaClass" title="NiaClass"/>
</p>
<p align="center">
<a href="https://pypi.python.org/pypi/niaclass">
<img alt="PyPI Version" src="https://img.shields.io/pypi/v/niaclass.svg" />
</a>
<img alt="PyPI - Python Version" src="https://img.shields.io/pypi/pyversions/niaclass.svg" />
<img alt="PyPI - Downloads" src="https://img.shields.io/pypi/dm/niaclass.svg" />
<a href="https://github.com/lukapecnik/niaclass/blob/master/LICENSE">
<img alt="GitHub license" src="https://img.shields.io/github/license/lukapecnik/niaclass.svg">
</a>
</p>
<p align="center">
<img alt="GitHub commit activity" src="https://img.shields.io/github/commit-activity/w/lukapecnik/niaclass.svg" />
<a href="http://isitmaintained.com/project/lukapecnik/niaclass">
<img alt="Average time to resolve an issue" src="http://isitmaintained.com/badge/resolution/lukapecnik/niaclass.svg" />
</a>
<a href="http://isitmaintained.com/project/lukapecnik/niaclass">
<img alt="Percentage of issues still open" src="http://isitmaintained.com/badge/open/lukapecnik/niaclass.svg" />
</a>
<img alt="GitHub contributors" src="https://img.shields.io/github/contributors/lukapecnik/niaclass.svg" />
</p>
<p align="center">
<a href="#-installation">📦 Installation</a> •
<a href="#-functionalities">✨ Functionalities</a> •
<a href="#-examples">🚀 Examples</a> •
<a href="#-reference-papers">📝 Reference papers</a> •
<a href="#-license">🔑 License</a> •
<a href="#-cite-us">📄 Cite us</a>
</p>
NiaClass is a framework for solving classification tasks using nature-inspired algorithms. The framework is written fully in Python. Its goal is to find the best possible set of classification rules for the input data using the <a href="https://github.com/NiaOrg/NiaPy">NiaPy framework</a>, which is a popular Python collection of nature-inspired algorithms. The NiaClass classifier supports numerical and categorical features.
* **Free software:** MIT license
* **Documentation:** https://niaclass.readthedocs.io/en/latest
* **Python versions:** 3.7.x, 3.8.x, 3.9.x
<p align="center"><img src=".github/images/niaclass.png" alt="NiaClass" title="NiaClass"/></p>
## 📦 Installation
### pip3
To install NiaClass with pip3, use:
```sh
pip3 install niaclass
```
In case you would like to try out the latest pre-release version of the framework, install it using:
```sh
pip3 install niaclass --pre
```
### Fedora Linux
To install NiaClass on Fedora, use:
```sh
$ dnf install python-niaclass
```
## ✨ Functionalities
- Binary classification,
- Multi-class classification,
- Support for numerical and categorical features.
## 🚀 Examples
Usage examples can be found [here](examples).
## 📝 Reference papers
[1] Iztok Fister Jr., Iztok Fister, Dušan Fister, Grega Vrbančič, Vili Podgorelec. [On the potential of the nature-inspired algorithms for pure binary classification](http://www.iztok-jr-fister.eu/static/publications/267.pdf). In. Computational science - ICCS 2020 : 20th International Conference, Proceedings. Part V. Cham: Springer, pp. 18-28. Lecture notes in computer science, 12141, 2020
## 🔑 License
This package is distributed under the MIT License. This license can be found online at <http://www.opensource.org/licenses/MIT>.
## Disclaimer
This framework is provided as-is, and there are no guarantees that it fits your purposes or that it is bug-free. Use it at your own risk!
## 📄 Cite us
Pečnik L., Fister I., Fister Jr. I. (2021) [NiaClass: Building Rule-Based Classification Models Using Nature-Inspired Algorithms](https://iztok-jr-fister.eu/static/publications/291.pdf). In: Tan Y., Shi Y. (eds) Advances in Swarm Intelligence. ICSI 2021. Lecture Notes in Computer Science, vol 12690. Springer, Cham.
Raw data
{
"_id": null,
"home_page": "https://github.com/firefly-cpp/NiaClass",
"name": "niaclass",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.9",
"maintainer_email": null,
"keywords": "classification, machine learning, NiaPy, nature-inspired algorithms, optimization",
"author": "Luka Pe\u010dnik",
"author_email": "lukapecnik96@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/78/fb/4aa88eaa33dbbb2825b01384b6f41a0f3162e7c71582470b3aea007fd8a7/niaclass-0.2.2.tar.gz",
"platform": null,
"description": "<p align=\"center\">\n <img src=\".github/images/niaclass_logo.png\" alt=\"NiaClass\" title=\"NiaClass\"/>\n</p>\n\n<p align=\"center\">\n <a href=\"https://pypi.python.org/pypi/niaclass\">\n <img alt=\"PyPI Version\" src=\"https://img.shields.io/pypi/v/niaclass.svg\" />\n </a>\n <img alt=\"PyPI - Python Version\" src=\"https://img.shields.io/pypi/pyversions/niaclass.svg\" />\n <img alt=\"PyPI - Downloads\" src=\"https://img.shields.io/pypi/dm/niaclass.svg\" />\n <a href=\"https://github.com/lukapecnik/niaclass/blob/master/LICENSE\">\n <img alt=\"GitHub license\" src=\"https://img.shields.io/github/license/lukapecnik/niaclass.svg\">\n </a>\n</p>\n\n<p align=\"center\">\n <img alt=\"GitHub commit activity\" src=\"https://img.shields.io/github/commit-activity/w/lukapecnik/niaclass.svg\" />\n <a href=\"http://isitmaintained.com/project/lukapecnik/niaclass\">\n <img alt=\"Average time to resolve an issue\" src=\"http://isitmaintained.com/badge/resolution/lukapecnik/niaclass.svg\" />\n </a>\n <a href=\"http://isitmaintained.com/project/lukapecnik/niaclass\">\n <img alt=\"Percentage of issues still open\" src=\"http://isitmaintained.com/badge/open/lukapecnik/niaclass.svg\" />\n </a>\n <img alt=\"GitHub contributors\" src=\"https://img.shields.io/github/contributors/lukapecnik/niaclass.svg\" />\n</p>\n\n<p align=\"center\">\n <a href=\"#-installation\">\ud83d\udce6 Installation</a> \u2022\n <a href=\"#-functionalities\">\u2728 Functionalities</a> \u2022\n <a href=\"#-examples\">\ud83d\ude80 Examples</a> \u2022\n <a href=\"#-reference-papers\">\ud83d\udcdd Reference papers</a> \u2022\n <a href=\"#-license\">\ud83d\udd11 License</a> \u2022\n <a href=\"#-cite-us\">\ud83d\udcc4 Cite us</a>\n</p>\n\nNiaClass is a framework for solving classification tasks using nature-inspired algorithms. The framework is written fully in Python. Its goal is to find the best possible set of classification rules for the input data using the <a href=\"https://github.com/NiaOrg/NiaPy\">NiaPy framework</a>, which is a popular Python collection of nature-inspired algorithms. The NiaClass classifier supports numerical and categorical features.\n\n* **Free software:** MIT license\n* **Documentation:** https://niaclass.readthedocs.io/en/latest\n* **Python versions:** 3.7.x, 3.8.x, 3.9.x\n\n<p align=\"center\"><img src=\".github/images/niaclass.png\" alt=\"NiaClass\" title=\"NiaClass\"/></p>\n\n## \ud83d\udce6 Installation\n\n### pip3\n\nTo install NiaClass with pip3, use:\n\n```sh\npip3 install niaclass\n```\n\nIn case you would like to try out the latest pre-release version of the framework, install it using:\n\n```sh\npip3 install niaclass --pre\n```\n\n### Fedora Linux\n\nTo install NiaClass on Fedora, use:\n\n```sh\n$ dnf install python-niaclass\n```\n\n## \u2728 Functionalities\n\n- Binary classification,\n- Multi-class classification,\n- Support for numerical and categorical features.\n\n## \ud83d\ude80 Examples\n\nUsage examples can be found [here](examples).\n\n## \ud83d\udcdd Reference papers\n\n[1] Iztok Fister Jr., Iztok Fister, Du\u0161an Fister, Grega Vrban\u010di\u010d, Vili Podgorelec. [On the potential of the nature-inspired algorithms for pure binary classification](http://www.iztok-jr-fister.eu/static/publications/267.pdf). In. Computational science - ICCS 2020 : 20th International Conference, Proceedings. Part V. Cham: Springer, pp. 18-28. Lecture notes in computer science, 12141, 2020\n\n## \ud83d\udd11 License\n\nThis package is distributed under the MIT License. This license can be found online at <http://www.opensource.org/licenses/MIT>.\n\n## Disclaimer\n\nThis framework is provided as-is, and there are no guarantees that it fits your purposes or that it is bug-free. Use it at your own risk!\n\n## \ud83d\udcc4 Cite us\n\nPe\u010dnik L., Fister I., Fister Jr. I. (2021) [NiaClass: Building Rule-Based Classification Models Using Nature-Inspired Algorithms](https://iztok-jr-fister.eu/static/publications/291.pdf). In: Tan Y., Shi Y. (eds) Advances in Swarm Intelligence. ICSI 2021. Lecture Notes in Computer Science, vol 12690. Springer, Cham.\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Python framework for building classifiers using nature-inspired algorithms",
"version": "0.2.2",
"project_urls": {
"Homepage": "https://github.com/firefly-cpp/NiaClass",
"Repository": "https://github.com/firefly-cpp/NiaClass"
},
"split_keywords": [
"classification",
" machine learning",
" niapy",
" nature-inspired algorithms",
" optimization"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b963547e476c2e4ec1c639f356b318cdef8bd4b6b24600d8f16cb08dcef034e5",
"md5": "86d453ab429d37c18f4cd346b8b7eb1f",
"sha256": "6d9dcc85dc9154f6b1634a5925f77885750c96110070884d917c1b5a276f7d2d"
},
"downloads": -1,
"filename": "niaclass-0.2.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "86d453ab429d37c18f4cd346b8b7eb1f",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.9",
"size": 9269,
"upload_time": "2024-12-05T19:16:51",
"upload_time_iso_8601": "2024-12-05T19:16:51.292131Z",
"url": "https://files.pythonhosted.org/packages/b9/63/547e476c2e4ec1c639f356b318cdef8bd4b6b24600d8f16cb08dcef034e5/niaclass-0.2.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "78fb4aa88eaa33dbbb2825b01384b6f41a0f3162e7c71582470b3aea007fd8a7",
"md5": "4470390683871cf0c12f4fb732d2a68b",
"sha256": "15c27d5481ab2f27fe037ca64e09cc7e475cd55556941a18e0ed712c79054eed"
},
"downloads": -1,
"filename": "niaclass-0.2.2.tar.gz",
"has_sig": false,
"md5_digest": "4470390683871cf0c12f4fb732d2a68b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.9",
"size": 9386,
"upload_time": "2024-12-05T19:16:52",
"upload_time_iso_8601": "2024-12-05T19:16:52.762200Z",
"url": "https://files.pythonhosted.org/packages/78/fb/4aa88eaa33dbbb2825b01384b6f41a0f3162e7c71582470b3aea007fd8a7/niaclass-0.2.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-05 19:16:52",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "firefly-cpp",
"github_project": "NiaClass",
"travis_ci": true,
"coveralls": false,
"github_actions": true,
"lcname": "niaclass"
}