niaclass


Nameniaclass JSON
Version 0.1.4 PyPI version JSON
download
home_pagehttps://github.com/lukapecnik/NiaClass
SummaryPython framework for building classifiers using nature-inspired algorithms
upload_time2023-02-07 09:19:09
maintainer
docs_urlNone
authorLuka Pečnik
requires_python>=3.9,<4.0
licenseMIT
keywords classification niapy nature-inspired algorithms
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            <p align="center"><img src=".github/images/niaclass_logo.png" alt="NiaClass" title="NiaClass"/></p>

---

[![PyPI Version](https://img.shields.io/pypi/v/niaclass.svg)](https://pypi.python.org/pypi/niaclass)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/niaclass.svg)
![PyPI - Downloads](https://img.shields.io/pypi/dm/niaclass.svg)
[![GitHub license](https://img.shields.io/github/license/lukapecnik/niaclass.svg)](https://github.com/lukapecnik/niaclass/blob/master/LICENSE)
![GitHub commit activity](https://img.shields.io/github/commit-activity/w/lukapecnik/niaclass.svg)
[![Average time to resolve an issue](http://isitmaintained.com/badge/resolution/lukapecnik/niaclass.svg)](http://isitmaintained.com/project/lukapecnik/niaclass "Average time to resolve an issue")
[![Percentage of issues still open](http://isitmaintained.com/badge/open/lukapecnik/niaclass.svg)](http://isitmaintained.com/project/lukapecnik/niaclass "Percentage of issues still open")
![GitHub contributors](https://img.shields.io/github/contributors/lukapecnik/niaclass.svg)

NiaClass is a framework for solving classification tasks using nature-inspired algorithms. The framework is written fully in Python. Its goal is to find the best possible set of classification rules for the input data using the <a href="https://github.com/NiaOrg/NiaPy">NiaPy framework</a>, which is a popular Python collection of nature-inspired algorithms. The NiaClass classifier supports numerical and categorical features.

* **Free software:** MIT license,
* **Documentation:** https://niaclass.readthedocs.io/en/latest/,
* **Python versions:** 3.7.x, 3.8.x, 3.9.x.

<p align="center"><img src=".github/images/niaclass.png" alt="NiaClass" title="NiaClass"/></p>

## Installation

### pip3

Install NiaClass with pip3:

```sh
pip3 install niaclass
```

In case you would like to try out the latest pre-release version of the framework, install it using:

```sh
pip3 install niaclass --pre
```

### Fedora Linux

To install NiaClass on Fedora, use:

```sh
$ dnf install python-niaclass
```

## Functionalities

- Binary classification,
- Multi-class classification,
- Support for numerical and categorical features.

## Examples

Usage examples can be found [here](examples).

## Reference Papers (software is based on ideas from):

[1] Iztok Fister Jr., Iztok Fister, Dušan Fister, Grega Vrbančič, Vili Podgorelec. [On the potential of the nature-inspired algorithms for pure binary classification](http://www.iztok-jr-fister.eu/static/publications/267.pdf). In. Computational science - ICCS 2020 : 20th International Conference, Proceedings. Part V. Cham: Springer, pp. 18-28. Lecture notes in computer science, 12141, 2020

## Licence

This package is distributed under the MIT License. This license can be found online at <http://www.opensource.org/licenses/MIT>.

## Disclaimer

This framework is provided as-is, and there are no guarantees that it fits your purposes or that it is bug-free. Use it at your own risk!

## Cite us

Pečnik L., Fister I., Fister Jr. I. (2021) NiaClass: Building Rule-Based Classification Models Using Nature-Inspired Algorithms. In: Tan Y., Shi Y. (eds) Advances in Swarm Intelligence. ICSI 2021. Lecture Notes in Computer Science, vol 12690. Springer, Cham.


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/lukapecnik/NiaClass",
    "name": "niaclass",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.9,<4.0",
    "maintainer_email": "",
    "keywords": "classification,NiaPy,nature-inspired algorithms",
    "author": "Luka Pe\u010dnik",
    "author_email": "lukapecnik96@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/fa/1a/f67beb76b364227f20fb51225f4b36e324440506cff12ce8dc772c39e42f/niaclass-0.1.4.tar.gz",
    "platform": null,
    "description": "<p align=\"center\"><img src=\".github/images/niaclass_logo.png\" alt=\"NiaClass\" title=\"NiaClass\"/></p>\n\n---\n\n[![PyPI Version](https://img.shields.io/pypi/v/niaclass.svg)](https://pypi.python.org/pypi/niaclass)\n![PyPI - Python Version](https://img.shields.io/pypi/pyversions/niaclass.svg)\n![PyPI - Downloads](https://img.shields.io/pypi/dm/niaclass.svg)\n[![GitHub license](https://img.shields.io/github/license/lukapecnik/niaclass.svg)](https://github.com/lukapecnik/niaclass/blob/master/LICENSE)\n![GitHub commit activity](https://img.shields.io/github/commit-activity/w/lukapecnik/niaclass.svg)\n[![Average time to resolve an issue](http://isitmaintained.com/badge/resolution/lukapecnik/niaclass.svg)](http://isitmaintained.com/project/lukapecnik/niaclass \"Average time to resolve an issue\")\n[![Percentage of issues still open](http://isitmaintained.com/badge/open/lukapecnik/niaclass.svg)](http://isitmaintained.com/project/lukapecnik/niaclass \"Percentage of issues still open\")\n![GitHub contributors](https://img.shields.io/github/contributors/lukapecnik/niaclass.svg)\n\nNiaClass is a framework for solving classification tasks using nature-inspired algorithms. The framework is written fully in Python. Its goal is to find the best possible set of classification rules for the input data using the <a href=\"https://github.com/NiaOrg/NiaPy\">NiaPy framework</a>, which is a popular Python collection of nature-inspired algorithms. The NiaClass classifier supports numerical and categorical features.\n\n* **Free software:** MIT license,\n* **Documentation:** https://niaclass.readthedocs.io/en/latest/,\n* **Python versions:** 3.7.x, 3.8.x, 3.9.x.\n\n<p align=\"center\"><img src=\".github/images/niaclass.png\" alt=\"NiaClass\" title=\"NiaClass\"/></p>\n\n## Installation\n\n### pip3\n\nInstall NiaClass with pip3:\n\n```sh\npip3 install niaclass\n```\n\nIn case you would like to try out the latest pre-release version of the framework, install it using:\n\n```sh\npip3 install niaclass --pre\n```\n\n### Fedora Linux\n\nTo install NiaClass on Fedora, use:\n\n```sh\n$ dnf install python-niaclass\n```\n\n## Functionalities\n\n- Binary classification,\n- Multi-class classification,\n- Support for numerical and categorical features.\n\n## Examples\n\nUsage examples can be found [here](examples).\n\n## Reference Papers (software is based on ideas from):\n\n[1] Iztok Fister Jr., Iztok Fister, Du\u0161an Fister, Grega Vrban\u010di\u010d, Vili Podgorelec. [On the potential of the nature-inspired algorithms for pure binary classification](http://www.iztok-jr-fister.eu/static/publications/267.pdf). In. Computational science - ICCS 2020 : 20th International Conference, Proceedings. Part V. Cham: Springer, pp. 18-28. Lecture notes in computer science, 12141, 2020\n\n## Licence\n\nThis package is distributed under the MIT License. This license can be found online at <http://www.opensource.org/licenses/MIT>.\n\n## Disclaimer\n\nThis framework is provided as-is, and there are no guarantees that it fits your purposes or that it is bug-free. Use it at your own risk!\n\n## Cite us\n\nPe\u010dnik L., Fister I., Fister Jr. I. (2021) NiaClass: Building Rule-Based Classification Models Using Nature-Inspired Algorithms. In: Tan Y., Shi Y. (eds) Advances in Swarm Intelligence. ICSI 2021. Lecture Notes in Computer Science, vol 12690. Springer, Cham.\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Python framework for building classifiers using nature-inspired algorithms",
    "version": "0.1.4",
    "split_keywords": [
        "classification",
        "niapy",
        "nature-inspired algorithms"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a7b057d767d983ce3e5c68f73e7326bf5ede094e1e0b5b4d0cae293fe412313a",
                "md5": "536ca5511cb96743af8984b76ccfd87d",
                "sha256": "fe6a7c0ac24a6c9f079b1c3b9fda3ebd06f6f2babcfe3ae5d0079a9e5d056ca2"
            },
            "downloads": -1,
            "filename": "niaclass-0.1.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "536ca5511cb96743af8984b76ccfd87d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9,<4.0",
            "size": 8784,
            "upload_time": "2023-02-07T09:19:07",
            "upload_time_iso_8601": "2023-02-07T09:19:07.782237Z",
            "url": "https://files.pythonhosted.org/packages/a7/b0/57d767d983ce3e5c68f73e7326bf5ede094e1e0b5b4d0cae293fe412313a/niaclass-0.1.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fa1af67beb76b364227f20fb51225f4b36e324440506cff12ce8dc772c39e42f",
                "md5": "a29f72903db7d93054dd3ae6ceb3af34",
                "sha256": "7114b0d576a89f0fbfb47633f50ed75c090b666c7ca622af67b53fc28b434045"
            },
            "downloads": -1,
            "filename": "niaclass-0.1.4.tar.gz",
            "has_sig": false,
            "md5_digest": "a29f72903db7d93054dd3ae6ceb3af34",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9,<4.0",
            "size": 9140,
            "upload_time": "2023-02-07T09:19:09",
            "upload_time_iso_8601": "2023-02-07T09:19:09.888913Z",
            "url": "https://files.pythonhosted.org/packages/fa/1a/f67beb76b364227f20fb51225f4b36e324440506cff12ce8dc772c39e42f/niaclass-0.1.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-02-07 09:19:09",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "lukapecnik",
    "github_project": "NiaClass",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": false,
    "lcname": "niaclass"
}
        
Elapsed time: 0.05791s