Name | niceml JSON |
Version |
0.16.0
JSON |
| download |
home_page | None |
Summary | Welcome to niceML 🍦, a Python-based MLOps framework that uses TensorFlow and Dagster. This framework streamlines the development, and maintenance of machine learning models, providing an end-to-end solution for building efficient and scalable pipelines. |
upload_time | 2024-06-13 09:44:40 |
maintainer | None |
docs_url | None |
author | Denis Stalz-John |
requires_python | !=2.7.*,!=3.0.*,!=3.1.*,!=3.12.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,!=3.7.*,!=3.8.*,>=3.9 |
license | None |
keywords |
tensorflow
scikit-learn
streamlit
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# This is the readme for niceML
[![PyPI](https://img.shields.io/pypi/v/niceml)](
https://pypi.org/project/niceml/
)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/niceml)
[![🧪 Pytest](
https://github.com/codecentric-oss/niceml/actions/workflows/pytest.yaml/badge.svg)](
https://github.com/codecentric-oss/niceml/actions/workflows/pytest.yaml)
![GitHub commit activity](
https://img.shields.io/github/commit-activity/m/codecentric-oss/niceml)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](
https://opensource.org/licenses/MIT)
**niceML** is a tool to help you set up your machine learning projects faster.
It provides pipelines for a variety of ML tasks, like
- **Object Detection**,
- **Semantic Segmentation**,
- **Regression**,
- **Classification**
- and others.
All you have to do is configure your pipeline, and you're ready to go!
You can also add your own components to the build-in dashboard,
where you can compare the results and performance of your ML models.
Further documentation is available at [niceML.io](https://niceml.io).
A lot more documentation will follow soon!
Raw data
{
"_id": null,
"home_page": null,
"name": "niceml",
"maintainer": null,
"docs_url": null,
"requires_python": "!=2.7.*,!=3.0.*,!=3.1.*,!=3.12.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,!=3.7.*,!=3.8.*,>=3.9",
"maintainer_email": null,
"keywords": "tensorflow, scikit-learn, streamlit",
"author": "Denis Stalz-John",
"author_email": "denis.stalz-john@codecentric.de",
"download_url": "https://files.pythonhosted.org/packages/49/e7/67e4b7db221bf84586c0d8754f12db980c3fd9307c1ba680e257b8b582a1/niceml-0.16.0.tar.gz",
"platform": null,
"description": "# This is the readme for niceML\n[![PyPI](https://img.shields.io/pypi/v/niceml)](\nhttps://pypi.org/project/niceml/\n)\n![PyPI - Python Version](https://img.shields.io/pypi/pyversions/niceml)\n[![\ud83e\uddea Pytest](\nhttps://github.com/codecentric-oss/niceml/actions/workflows/pytest.yaml/badge.svg)](\nhttps://github.com/codecentric-oss/niceml/actions/workflows/pytest.yaml)\n![GitHub commit activity](\nhttps://img.shields.io/github/commit-activity/m/codecentric-oss/niceml)\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](\nhttps://opensource.org/licenses/MIT)\n\n**niceML** is a tool to help you set up your machine learning projects faster. \nIt provides pipelines for a variety of ML tasks, like\n\n- **Object Detection**,\n- **Semantic Segmentation**,\n- **Regression**,\n- **Classification**\n- and others.\n\nAll you have to do is configure your pipeline, and you're ready to go!\n\nYou can also add your own components to the build-in dashboard, \nwhere you can compare the results and performance of your ML models.\n\nFurther documentation is available at [niceML.io](https://niceml.io).\n\nA lot more documentation will follow soon!\n\n",
"bugtrack_url": null,
"license": null,
"summary": "Welcome to niceML \ud83c\udf66, a Python-based MLOps framework that uses TensorFlow and Dagster. This framework streamlines the development, and maintenance of machine learning models, providing an end-to-end solution for building efficient and scalable pipelines.",
"version": "0.16.0",
"project_urls": {
"homepage": "https://niceml.io",
"repository": "https://github.com/codecentric-oss/niceml"
},
"split_keywords": [
"tensorflow",
" scikit-learn",
" streamlit"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "cdda1bc0439a2a85e38da593d898f60fa5478d7f1f207bf2741ab0948db4e24b",
"md5": "5c46e42807254e1d49c946a68fdd3465",
"sha256": "b3df74ccd03e829b79d4511a2c508b6eff8d430537dc6fceef4e2f244f703de0"
},
"downloads": -1,
"filename": "niceml-0.16.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "5c46e42807254e1d49c946a68fdd3465",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "!=2.7.*,!=3.0.*,!=3.1.*,!=3.12.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,!=3.7.*,!=3.8.*,>=3.9",
"size": 2284734,
"upload_time": "2024-06-13T09:44:38",
"upload_time_iso_8601": "2024-06-13T09:44:38.398798Z",
"url": "https://files.pythonhosted.org/packages/cd/da/1bc0439a2a85e38da593d898f60fa5478d7f1f207bf2741ab0948db4e24b/niceml-0.16.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "49e767e4b7db221bf84586c0d8754f12db980c3fd9307c1ba680e257b8b582a1",
"md5": "3b8bc1a83d9f7ca9798fe4880a38ed8f",
"sha256": "981093b0725be60d5d01bd8e4fafb4a51ba8441f0daf4f637674c798c91803d6"
},
"downloads": -1,
"filename": "niceml-0.16.0.tar.gz",
"has_sig": false,
"md5_digest": "3b8bc1a83d9f7ca9798fe4880a38ed8f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "!=2.7.*,!=3.0.*,!=3.1.*,!=3.12.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,!=3.7.*,!=3.8.*,>=3.9",
"size": 2165627,
"upload_time": "2024-06-13T09:44:40",
"upload_time_iso_8601": "2024-06-13T09:44:40.483756Z",
"url": "https://files.pythonhosted.org/packages/49/e7/67e4b7db221bf84586c0d8754f12db980c3fd9307c1ba680e257b8b582a1/niceml-0.16.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-06-13 09:44:40",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "codecentric-oss",
"github_project": "niceml",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "niceml"
}