nist


Namenist JSON
Version 0.0.2 PyPI version JSON
download
home_pagehttps://github.com/dsm-72/nist
Summarysi type metric
upload_time2023-10-08 17:14:49
maintainer
docs_urlNone
authordsm-72
requires_python>=3.11
licenseApache Software License 2.0
keywords nbdev jupyter notebook python byte bytes kilo tera giga unit dataclass strenum
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # nist

<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->

From the [National Institute of Standards and
Technology](https://www.nist.gov)’s [Office OF Weights and
Measures](https://www.nist.gov/pml/owm), one can find a handy list of
all the [metric
prefixes](https://www.nist.gov/pml/owm/metric-si-prefixes#:~:text=Prefix%20Total&text=Eight%20original%20SI%20prefixes%20were,from%20Greek%20and%20Latin%20numbers.):
e.g.

| Purpose                          | Name                       | Symbol | Factor       | Name         |
|----------------------------------|----------------------------|--------|--------------|--------------|
| larger quantities or whole units | quetta                     | Q      | $$10^{30}$$  | nonillion    |
|                                  | ronna                      | R      | $$10^{27}$$  | octillion    |
|                                  | yotta                      | Y      | $$10^{24}$$  | septillion   |
|                                  | …                          | …      | …            | …            |
|                                  | hecto Example: hectare     | h      | $$10^{2}$$   | hundred      |
|                                  | deka Example: dekameter    | da     | $$10^{1}$$   | ten          |
|                                  |                            |        | $$10^{o}$$   | one          |
|                                  | deci Example: decimeter    | da     | $$10^{-1}$$  | tenth        |
|                                  | centi Example: centigram   | h      | $$10^{-2}$$  | hundredth    |
|                                  | …                          | …      | …            | …            |
|                                  | yocto Example: yoctosecond | y      | $$10^{-24}$$ | septillionth |
|                                  | ronto                      | r      | $$10^{-27}$$ | octillionth  |
| smaller quantities or sub units  | quecto                     | q      | $$10^{-30}$$ | nonillionth  |

Oh how nice it would be to have a class like
[`unit`](https://dsm-72.github.io/nist/unit.html#unit) which we could
subclass and use as follows:

``` python
class second(unit): 
    name = 'second'

s1 = second(1)
s1, s1.kilo, s1.milli, s1.to(3), float(s1.to(3))
(1.0 S, 0.001 KS, 1000.0 mS, 0.001 KS, 0.001)
```

ah so easy to convert between and even have clean formatting.

## Install

``` sh
pip install nist
```

## Usage

### [`fact`](https://dsm-72.github.io/nist/fact.html#fact)

While each [`fact`](https://dsm-72.github.io/nist/fact.html#fact)
(factor) has `base: ClassVar[int] = 10`, `base` is actually an instance
variable.

``` python
>>> float(kilo()), float(kilo(base=2)), float(kilo(base=5)), float(kilo(base=10))

(1000.0, 8.0, 125.0, 1000.0)
```

In case that behavior is not obvious
[`fact`](https://dsm-72.github.io/nist/fact.html#fact) is really just a
named and explicilty signed exponent:

``` python
>>> kb = kilo(base=2)
>>> kb.abrv, kb.base, kb.expo, kb.sign, kb.ekey, float(kb)

('kilo', 2, 3, 1, 3, 8.0)
```

Each [`fact`](https://dsm-72.github.io/nist/fact.html#fact) uses `efmt`
for its representation by default `efmt` is True, but can be turned off
by setting `efmt` to False.

``` python
>>> (
    (decka(), hecto(), kilo(), mega(), giga(), tera()),
    (decka(showefmt=False), hecto(showefmt=False), kilo(showefmt=False), mega(showefmt=False), giga(showefmt=False), tera(showefmt=False))
)

((e+1, e+2, e+3, e+6, e+9, e+12), (F1P, F2P, F3P, F6P, F9P, F12P))
```

Actually we have three formats to work with:

``` python
>>> kilo().fstr, kilo(showbase=True).bstr, kilo(showbase=True).efmt

('F3P', '10^+3', 'e+3')
```

### [`unit`](https://dsm-72.github.io/nist/unit.html#unit)

The goal of the [`unit`](https://dsm-72.github.io/nist/unit.html#unit)
class is to make it easy to create units:

``` python
class second(unit): 
    name = 'second'

>>> s1 = second(1)
>>> s1, s1.kilo, s1.milli, s1.to(3), float(s1.to(3)), s1.shownumb


(1.0 S, 0.001 KS, 1000.0 mS, 0.001 KS, 0.001, True)
```

We can also explore all the different ways of viewing formats:

``` python
import pandas as pd

results = list()
factors = (tera, decka, deci, centi, milli, pico)
for fcls in factors:
    for flt in (1, 20, 0.03):
        for factrepr in {'abrv', 'name', 'symb'}:
            for shownumb in (True, False):
                for abrvunit in (True, False):
                    res = fmtunit(
                        org = flt, flt=flt / float(fcls()), unt = unit, fct = fcls,
                        factrepr=factrepr, shownumb=shownumb, abrvunit=abrvunit,
                        unitname='second', factname=None, ndig=3
                    )
                    
                    results.append(dict(
                        fname=fcls.name, flt=flt, res=res, org = flt / float(fcls()),
                        shownumb=shownumb, abrvunit=abrvunit, factrepr=factrepr
                    ))

df = pd.DataFrame(results).sort_values(by=['fname', 'res'])
df.head()
```

|     | fname     |  flt | res          | org | shownumb | abrvunit | factrepr |
|----:|:----------|-----:|:-------------|----:|:---------|:---------|:---------|
| 134 | hundredth | 0.03 | 0.03 S       |   3 | False    | True     | name     |
| 138 | hundredth | 0.03 | 0.03 S       |   3 | False    | True     | abrv     |
| 142 | hundredth | 0.03 | 0.03 S       |   3 | False    | True     | symb     |
| 143 | hundredth | 0.03 | 0.03 S       |   3 | False    | False    | symb     |
| 135 | hundredth | 0.03 | 0.03 seconds |   3 | False    | False    | name     |

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/dsm-72/nist",
    "name": "nist",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": "",
    "keywords": "nbdev jupyter notebook python byte bytes kilo tera giga unit dataclass strenum",
    "author": "dsm-72",
    "author_email": "sumner.magruder@yale.edu",
    "download_url": "https://files.pythonhosted.org/packages/80/26/28ceb116d563abda23c67d413277fb0f21c83204825c123bd6dd7631ec2f/nist-0.0.2.tar.gz",
    "platform": null,
    "description": "# nist\n\n<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->\n\nFrom the [National Institute of Standards and\nTechnology](https://www.nist.gov)\u2019s [Office OF Weights and\nMeasures](https://www.nist.gov/pml/owm), one can find a handy list of\nall the [metric\nprefixes](https://www.nist.gov/pml/owm/metric-si-prefixes#:~:text=Prefix%20Total&text=Eight%20original%20SI%20prefixes%20were,from%20Greek%20and%20Latin%20numbers.):\ne.g.\n\n| Purpose                          | Name                       | Symbol | Factor       | Name         |\n|----------------------------------|----------------------------|--------|--------------|--------------|\n| larger quantities or whole units | quetta                     | Q      | $$10^{30}$$  | nonillion    |\n|                                  | ronna                      | R      | $$10^{27}$$  | octillion    |\n|                                  | yotta                      | Y      | $$10^{24}$$  | septillion   |\n|                                  | \u2026                          | \u2026      | \u2026            | \u2026            |\n|                                  | hecto Example: hectare     | h      | $$10^{2}$$   | hundred      |\n|                                  | deka Example: dekameter    | da     | $$10^{1}$$   | ten          |\n|                                  |                            |        | $$10^{o}$$   | one          |\n|                                  | deci Example: decimeter    | da     | $$10^{-1}$$  | tenth        |\n|                                  | centi Example: centigram   | h      | $$10^{-2}$$  | hundredth    |\n|                                  | \u2026                          | \u2026      | \u2026            | \u2026            |\n|                                  | yocto Example: yoctosecond | y      | $$10^{-24}$$ | septillionth |\n|                                  | ronto                      | r      | $$10^{-27}$$ | octillionth  |\n| smaller quantities or sub units  | quecto                     | q      | $$10^{-30}$$ | nonillionth  |\n\nOh how nice it would be to have a class like\n[`unit`](https://dsm-72.github.io/nist/unit.html#unit) which we could\nsubclass and use as follows:\n\n``` python\nclass second(unit): \n    name = 'second'\n\ns1 = second(1)\ns1, s1.kilo, s1.milli, s1.to(3), float(s1.to(3))\n(1.0 S, 0.001 KS, 1000.0 mS, 0.001 KS, 0.001)\n```\n\nah so easy to convert between and even have clean formatting.\n\n## Install\n\n``` sh\npip install nist\n```\n\n## Usage\n\n### [`fact`](https://dsm-72.github.io/nist/fact.html#fact)\n\nWhile each [`fact`](https://dsm-72.github.io/nist/fact.html#fact)\n(factor) has `base: ClassVar[int] = 10`, `base` is actually an instance\nvariable.\n\n``` python\n>>> float(kilo()), float(kilo(base=2)), float(kilo(base=5)), float(kilo(base=10))\n\n(1000.0, 8.0, 125.0, 1000.0)\n```\n\nIn case that behavior is not obvious\n[`fact`](https://dsm-72.github.io/nist/fact.html#fact) is really just a\nnamed and explicilty signed exponent:\n\n``` python\n>>> kb = kilo(base=2)\n>>> kb.abrv, kb.base, kb.expo, kb.sign, kb.ekey, float(kb)\n\n('kilo', 2, 3, 1, 3, 8.0)\n```\n\nEach [`fact`](https://dsm-72.github.io/nist/fact.html#fact) uses `efmt`\nfor its representation by default `efmt` is True, but can be turned off\nby setting `efmt` to False.\n\n``` python\n>>> (\n    (decka(), hecto(), kilo(), mega(), giga(), tera()),\n    (decka(showefmt=False), hecto(showefmt=False), kilo(showefmt=False), mega(showefmt=False), giga(showefmt=False), tera(showefmt=False))\n)\n\n((e+1, e+2, e+3, e+6, e+9, e+12), (F1P, F2P, F3P, F6P, F9P, F12P))\n```\n\nActually we have three formats to work with:\n\n``` python\n>>> kilo().fstr, kilo(showbase=True).bstr, kilo(showbase=True).efmt\n\n('F3P', '10^+3', 'e+3')\n```\n\n### [`unit`](https://dsm-72.github.io/nist/unit.html#unit)\n\nThe goal of the [`unit`](https://dsm-72.github.io/nist/unit.html#unit)\nclass is to make it easy to create units:\n\n``` python\nclass second(unit): \n    name = 'second'\n\n>>> s1 = second(1)\n>>> s1, s1.kilo, s1.milli, s1.to(3), float(s1.to(3)), s1.shownumb\n\n\n(1.0 S, 0.001 KS, 1000.0 mS, 0.001 KS, 0.001, True)\n```\n\nWe can also explore all the different ways of viewing formats:\n\n``` python\nimport pandas as pd\n\nresults = list()\nfactors = (tera, decka, deci, centi, milli, pico)\nfor fcls in factors:\n    for flt in (1, 20, 0.03):\n        for factrepr in {'abrv', 'name', 'symb'}:\n            for shownumb in (True, False):\n                for abrvunit in (True, False):\n                    res = fmtunit(\n                        org = flt, flt=flt / float(fcls()), unt = unit, fct = fcls,\n                        factrepr=factrepr, shownumb=shownumb, abrvunit=abrvunit,\n                        unitname='second', factname=None, ndig=3\n                    )\n                    \n                    results.append(dict(\n                        fname=fcls.name, flt=flt, res=res, org = flt / float(fcls()),\n                        shownumb=shownumb, abrvunit=abrvunit, factrepr=factrepr\n                    ))\n\ndf = pd.DataFrame(results).sort_values(by=['fname', 'res'])\ndf.head()\n```\n\n|     | fname     |  flt | res          | org | shownumb | abrvunit | factrepr |\n|----:|:----------|-----:|:-------------|----:|:---------|:---------|:---------|\n| 134 | hundredth | 0.03 | 0.03 S       |   3 | False    | True     | name     |\n| 138 | hundredth | 0.03 | 0.03 S       |   3 | False    | True     | abrv     |\n| 142 | hundredth | 0.03 | 0.03 S       |   3 | False    | True     | symb     |\n| 143 | hundredth | 0.03 | 0.03 S       |   3 | False    | False    | symb     |\n| 135 | hundredth | 0.03 | 0.03 seconds |   3 | False    | False    | name     |\n",
    "bugtrack_url": null,
    "license": "Apache Software License 2.0",
    "summary": "si type metric",
    "version": "0.0.2",
    "project_urls": {
        "Homepage": "https://github.com/dsm-72/nist"
    },
    "split_keywords": [
        "nbdev",
        "jupyter",
        "notebook",
        "python",
        "byte",
        "bytes",
        "kilo",
        "tera",
        "giga",
        "unit",
        "dataclass",
        "strenum"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4a162711b10fa14b5f102da511c13ebb4ae1cb6ab9d43e7f772b4e7f64751603",
                "md5": "7955f03273d5ffdbc7942be75ccc3a99",
                "sha256": "2c462589ca4cce41940bf5340a0bd4e10f193cbbddf429291d5e2a0c207feb8d"
            },
            "downloads": -1,
            "filename": "nist-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7955f03273d5ffdbc7942be75ccc3a99",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.11",
            "size": 19594,
            "upload_time": "2023-10-08T17:14:48",
            "upload_time_iso_8601": "2023-10-08T17:14:48.495956Z",
            "url": "https://files.pythonhosted.org/packages/4a/16/2711b10fa14b5f102da511c13ebb4ae1cb6ab9d43e7f772b4e7f64751603/nist-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "802628ceb116d563abda23c67d413277fb0f21c83204825c123bd6dd7631ec2f",
                "md5": "f07d9d4d6e076bc8b9c5f47d708c607e",
                "sha256": "02656b95981f88ba17157a9141788309ff3aaf0f0502db132a14fe18817b5219"
            },
            "downloads": -1,
            "filename": "nist-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "f07d9d4d6e076bc8b9c5f47d708c607e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11",
            "size": 18126,
            "upload_time": "2023-10-08T17:14:49",
            "upload_time_iso_8601": "2023-10-08T17:14:49.820514Z",
            "url": "https://files.pythonhosted.org/packages/80/26/28ceb116d563abda23c67d413277fb0f21c83204825c123bd6dd7631ec2f/nist-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-10-08 17:14:49",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "dsm-72",
    "github_project": "nist",
    "github_not_found": true,
    "lcname": "nist"
}
        
Elapsed time: 0.26920s