nmesh


Namenmesh JSON
Version 0.1.4 PyPI version JSON
download
home_pagehttps://github.com/JeanMaximilienCadic/nmesh
Summary3D Mesh processing
upload_time2023-01-06 11:20:33
maintainer
docs_urlNone
authorCADIC Jean Maximilien
requires_python
license: OSI Approved :: MIT License
keywords 3d mesh point cloud
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <h1 align="center">
  <br>
  NMesh
  <br>
  <br>
  <img src="https://drive.google.com/uc?id=1adCikDmjjDULmn-3R7_wpyyJX-nzKlHb">
</h1>

<p align="center">
  <a href="#modules">Modules</a> •
  <a href="#installing-the-application">Installing the application</a> •
  <a href="#makefile-commands">Makefile commands</a> •
  <a href="#environments">Environments</a> •
  <a href="#running-the-application">Running the application</a>
  <a href="#ressources">Ressources</a>
</p>


NMesh is a Python package that provides two high-level features:
- A simple Mesh processor
- A list of tool to convert mesh files into point cloud

You can reuse your favorite Python packages such as NumPy, SciPy and Cython to extend ZakuroCache integration.


# Modules

At a granular level, NMesh is a library that consists of the following components:

| Component | Description |
| ---- | --- |
| **nmesh** | Contains the implementation of NMesh |
| **nmesh.core** | Contain the functions executed by the library. |
| **nmesh.pc** | Processor for the point cloud|
| **nmesh.tests** | Unit tests |

# Installing the application
To clone and run this application, you'll need the following installed on your computer:
- [Git](https://git-scm.com)
- Docker Desktop
   - [Install Docker Desktop on Mac](https://docs.docker.com/docker-for-mac/install/)
   - [Install Docker Desktop on Windows](https://docs.docker.com/desktop/install/windows-install/)
   - [Install Docker Desktop on Linux](https://docs.docker.com/desktop/install/linux-install/)
- [Python](https://www.python.org/downloads/)

Install the package:
```bash
# Clone this repository and install the code
git clone https://github.com/JeanMaximilienCadic/nmesh

# Go into the repository
cd nmesh
```

# Makefile commands
Exhaustive list of make commands:
```
install_wheels
sandbox_cpu
sandbox_gpu
build_sandbox
push_environment
push_container_sandbox
push_container_vanilla
pull_container_vanilla
pull_container_sandbox
build_vanilla
build_wheels
auto_branch 
```
# Environments

## Docker

> **Note**
> 
> Running this application by using Docker is recommended.

To build and run the docker image
```
make build
make sandbox
```

## PythonEnv

> **Warning**
> 
> Running this application by using PythonEnv is possible but *not* recommended.
```
make install_wheels
```
# Running the application
```
from nmesh import NMesh, cfg
m = NMesh(cfg.drive.bull)
m.show()
```

## Ressources
* Vanilla:  https://en.wikipedia.org/wiki/Vanilla_software
* Sandbox: https://en.wikipedia.org/wiki/Sandbox_(software_development)
* All you need is docker: https://www.theregister.com/2014/05/23/google_containerization_two_billion/
* Dev in containers : https://code.visualstudio.com/docs/remote/containers
* Delta lake partitions: https://k21academy.com/microsoft-azure/data-engineer/delta-lake/





            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/JeanMaximilienCadic/nmesh",
    "name": "nmesh",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "3D mesh,point cloud",
    "author": "CADIC Jean Maximilien",
    "author_email": "contact@cadic.jp",
    "download_url": "",
    "platform": null,
    "description": "<h1 align=\"center\">\n  <br>\n  NMesh\n  <br>\n  <br>\n  <img src=\"https://drive.google.com/uc?id=1adCikDmjjDULmn-3R7_wpyyJX-nzKlHb\">\n</h1>\n\n<p align=\"center\">\n  <a href=\"#modules\">Modules</a> \u2022\n  <a href=\"#installing-the-application\">Installing the application</a> \u2022\n  <a href=\"#makefile-commands\">Makefile commands</a> \u2022\n  <a href=\"#environments\">Environments</a> \u2022\n  <a href=\"#running-the-application\">Running the application</a>\n  <a href=\"#ressources\">Ressources</a>\n</p>\n\n\nNMesh is a Python package that provides two high-level features:\n- A simple Mesh processor\n- A list of tool to convert mesh files into point cloud\n\nYou can reuse your favorite Python packages such as NumPy, SciPy and Cython to extend ZakuroCache integration.\n\n\n# Modules\n\nAt a granular level, NMesh is a library that consists of the following components:\n\n| Component | Description |\n| ---- | --- |\n| **nmesh** | Contains the implementation of NMesh |\n| **nmesh.core** | Contain the functions executed by the library. |\n| **nmesh.pc** | Processor for the point cloud|\n| **nmesh.tests** | Unit tests |\n\n# Installing the application\nTo clone and run this application, you'll need the following installed on your computer:\n- [Git](https://git-scm.com)\n- Docker Desktop\n   - [Install Docker Desktop on Mac](https://docs.docker.com/docker-for-mac/install/)\n   - [Install Docker Desktop on Windows](https://docs.docker.com/desktop/install/windows-install/)\n   - [Install Docker Desktop on Linux](https://docs.docker.com/desktop/install/linux-install/)\n- [Python](https://www.python.org/downloads/)\n\nInstall the package:\n```bash\n# Clone this repository and install the code\ngit clone https://github.com/JeanMaximilienCadic/nmesh\n\n# Go into the repository\ncd nmesh\n```\n\n# Makefile commands\nExhaustive list of make commands:\n```\ninstall_wheels\nsandbox_cpu\nsandbox_gpu\nbuild_sandbox\npush_environment\npush_container_sandbox\npush_container_vanilla\npull_container_vanilla\npull_container_sandbox\nbuild_vanilla\nbuild_wheels\nauto_branch \n```\n# Environments\n\n## Docker\n\n> **Note**\n> \n> Running this application by using Docker is recommended.\n\nTo build and run the docker image\n```\nmake build\nmake sandbox\n```\n\n## PythonEnv\n\n> **Warning**\n> \n> Running this application by using PythonEnv is possible but *not* recommended.\n```\nmake install_wheels\n```\n# Running the application\n```\nfrom nmesh import NMesh, cfg\nm = NMesh(cfg.drive.bull)\nm.show()\n```\n\n## Ressources\n* Vanilla:  https://en.wikipedia.org/wiki/Vanilla_software\n* Sandbox: https://en.wikipedia.org/wiki/Sandbox_(software_development)\n* All you need is docker: https://www.theregister.com/2014/05/23/google_containerization_two_billion/\n* Dev in containers : https://code.visualstudio.com/docs/remote/containers\n* Delta lake partitions: https://k21academy.com/microsoft-azure/data-engineer/delta-lake/\n\n\n\n\n",
    "bugtrack_url": null,
    "license": ": OSI Approved :: MIT License",
    "summary": "3D Mesh processing",
    "version": "0.1.4",
    "split_keywords": [
        "3d mesh",
        "point cloud"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e0ac22ddd0b5e15394a69a2b0e489b7380777e49b8ba7d3b9f9a3af25bebefe7",
                "md5": "410e78f4221b025ef76ed64b9034c742",
                "sha256": "bdc39d916651f442f9c7ac60426f32833f0b2df8604b1e6a46b17958f33583ed"
            },
            "downloads": -1,
            "filename": "nmesh-0.1.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "410e78f4221b025ef76ed64b9034c742",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 16589,
            "upload_time": "2023-01-06T11:20:33",
            "upload_time_iso_8601": "2023-01-06T11:20:33.045548Z",
            "url": "https://files.pythonhosted.org/packages/e0/ac/22ddd0b5e15394a69a2b0e489b7380777e49b8ba7d3b9f9a3af25bebefe7/nmesh-0.1.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-06 11:20:33",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "JeanMaximilienCadic",
    "github_project": "nmesh",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "nmesh"
}
        
Elapsed time: 0.05696s