nmmn


Namenmmn JSON
Version 1.2.1 PyPI version JSON
download
home_pagehttps://github.com/rsnemmen/nmmn
SummaryMiscellaneous methods for astronomy, dealing with arrays, statistical distributions and computing goodness-of-fit
upload_time2023-03-02 20:15:11
maintainer
docs_urlNone
authorRodrigo Nemmen
requires_python
licenseMIT License
keywords science statistics signal-processing numerical-methods astronomy numerical-simulations astrophysics mhd grmhd
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            `nmmn` package
================

Tools for astronomy, data analysis, time series, numerical simulations, gamma-ray astronomy and more! These are modules I wrote which I find useful—for whatever reason—in my research.

List of modules available ([more info here](http://rsnemmen.github.io/nmmn/)):

* `astro`: astronomy
* `dsp`: signal processing
* `lsd`: misc. operations on arrays, lists, dictionaries and sets
* `stats`: statistical methods
* [`sed`: spectral energy distributions](./docs/SEDs.ipynb)
* `plots`: custom plots
* `fermi`: Fermi LAT analysis methods
* `bayes`: Bayesian tools for dealing with posterior distributions
* `grmhd`: tools for dealing with GRMHD numerical simulations

Very basic [documentation](http://rsnemmen.github.io/nmmn/) for the package. Generated with Sphinx.

# Installation

You have a couple of options to install the module:

### 1. Install using `pip`:

```
pip install nmmn
```


### 2. Install the module on the system’s python library path: 

```
git clone https://github.com/rsnemmen/nmmn.git
cd nmmn
python setup.py install
```

### 3. Install the package with a symlink, so that changes to the source files will be immediately available:

```
git clone https://github.com/rsnemmen/nmmn.git
cd nmmn
python setup.py develop
```

This last method is preferred if you want the latest, bleeding-edge updates in the repo. You may need to run the last command with `sudo`.

## Updating

If you installed with `pip` (method 1), to upgrade the package to the latest stable version use

    pip install --upgrade nmmn

If you installed with the `setup.py` script and the `develop` option (method 3), use

    cd /path/to/nmmn
    git pull

# Usage

First import the specific module that you want to use:

    import nmmn.lsd

Then call the method you need. For example, to remove all `nan` and `inf` elements from a `numpy` array:

```python
import numpy as np

# generates some array with nan and inf
x=np.array([1,2,np.nan,np.inf])

# removes strange elements
xok=nmmn.lsd.delweird(x)
```

For more examples, please refer to the [examples doc](examples.md).

# TODO

* [x] need more examples of how to use the modules
* [x] add IFU data cubes method (refer to [ifscube](https://ifscube.readthedocs.io/en/latest/))

# License

See `LICENSE` file.

If you have suggestions of improvements, by all means please contribute with a pull request!  :)

The MIT License (MIT). Copyright (c) 2020 [Rodrigo Nemmen](http://rodrigonemmen.com)

[Visit the author's web page](https://rodrigonemmen.com/) and/or follow him on twitter ([@nemmen](https://twitter.com/nemmen)).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/rsnemmen/nmmn",
    "name": "nmmn",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "science,statistics,signal-processing,numerical-methods,astronomy,numerical-simulations,astrophysics,mhd,grmhd",
    "author": "Rodrigo Nemmen",
    "author_email": "rodrigo.nemmen@iag.usp.br",
    "download_url": "https://files.pythonhosted.org/packages/46/fa/d7666a766f5617ca1888cb29bccbdb4ab285f845280c31e7c534c8657c27/nmmn-1.2.1.tar.gz",
    "platform": null,
    "description": "`nmmn` package\n================\n\nTools for astronomy, data analysis, time series, numerical simulations, gamma-ray astronomy and more! These are modules I wrote which I find useful\u2014for whatever reason\u2014in my research.\n\nList of modules available ([more info here](http://rsnemmen.github.io/nmmn/)):\n\n* `astro`: astronomy\n* `dsp`: signal processing\n* `lsd`: misc. operations on arrays, lists, dictionaries and sets\n* `stats`: statistical methods\n* [`sed`: spectral energy distributions](./docs/SEDs.ipynb)\n* `plots`: custom plots\n* `fermi`: Fermi LAT analysis methods\n* `bayes`: Bayesian tools for dealing with posterior distributions\n* `grmhd`: tools for dealing with GRMHD numerical simulations\n\nVery basic [documentation](http://rsnemmen.github.io/nmmn/) for the package. Generated with Sphinx.\n\n# Installation\n\nYou have a couple of options to install the module:\n\n### 1. Install using `pip`:\n\n```\npip install nmmn\n```\n\n\n### 2. Install the module on the system\u2019s python library path: \n\n```\ngit clone https://github.com/rsnemmen/nmmn.git\ncd nmmn\npython setup.py install\n```\n\n### 3. Install the package with a symlink, so that changes to the source files will be immediately available:\n\n```\ngit clone https://github.com/rsnemmen/nmmn.git\ncd nmmn\npython setup.py develop\n```\n\nThis last method is preferred if you want the latest, bleeding-edge updates in the repo. You may need to run the last command with `sudo`.\n\n## Updating\n\nIf you installed with `pip` (method 1), to upgrade the package to the latest stable version use\n\n    pip install --upgrade nmmn\n\nIf you installed with the `setup.py` script and the `develop` option (method 3), use\n\n    cd /path/to/nmmn\n    git pull\n\n# Usage\n\nFirst import the specific module that you want to use:\n\n    import nmmn.lsd\n\nThen call the method you need. For example, to remove all `nan` and `inf` elements from a `numpy` array:\n\n```python\nimport numpy as np\n\n# generates some array with nan and inf\nx=np.array([1,2,np.nan,np.inf])\n\n# removes strange elements\nxok=nmmn.lsd.delweird(x)\n```\n\nFor more examples, please refer to the [examples doc](examples.md).\n\n# TODO\n\n* [x] need more examples of how to use the modules\n* [x] add IFU data cubes method (refer to [ifscube](https://ifscube.readthedocs.io/en/latest/))\n\n# License\n\nSee `LICENSE` file.\n\nIf you have suggestions of improvements, by all means please contribute with a pull request!  :)\n\nThe MIT License (MIT). Copyright (c) 2020 [Rodrigo Nemmen](http://rodrigonemmen.com)\n\n[Visit the author's web page](https://rodrigonemmen.com/) and/or follow him on twitter ([@nemmen](https://twitter.com/nemmen)).\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "Miscellaneous methods for astronomy, dealing with arrays, statistical distributions and computing goodness-of-fit",
    "version": "1.2.1",
    "project_urls": {
        "Download": "https://github.com/rsnemmen/nmmn/archive/1.2.1.tar.gz",
        "Homepage": "https://github.com/rsnemmen/nmmn"
    },
    "split_keywords": [
        "science",
        "statistics",
        "signal-processing",
        "numerical-methods",
        "astronomy",
        "numerical-simulations",
        "astrophysics",
        "mhd",
        "grmhd"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "337e72bbe38c6f4d5e2e6ba5092c65b0e065c10d6994a2d4853a729630260f69",
                "md5": "f23bead52c9fe64261679c4892937c08",
                "sha256": "a7a6747f443deac03f910b08236b987278f2a66e1b8a61abd8acb77a1c164202"
            },
            "downloads": -1,
            "filename": "nmmn-1.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "f23bead52c9fe64261679c4892937c08",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 78746,
            "upload_time": "2023-03-02T20:15:05",
            "upload_time_iso_8601": "2023-03-02T20:15:05.118848Z",
            "url": "https://files.pythonhosted.org/packages/33/7e/72bbe38c6f4d5e2e6ba5092c65b0e065c10d6994a2d4853a729630260f69/nmmn-1.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "46fad7666a766f5617ca1888cb29bccbdb4ab285f845280c31e7c534c8657c27",
                "md5": "4065a0924bacbfb9b61a6c205b7177f5",
                "sha256": "e4608cec3272ee84e90d39cec8c0e21d4dad8394b721d059db07adea7c687835"
            },
            "downloads": -1,
            "filename": "nmmn-1.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "4065a0924bacbfb9b61a6c205b7177f5",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 76292,
            "upload_time": "2023-03-02T20:15:11",
            "upload_time_iso_8601": "2023-03-02T20:15:11.214581Z",
            "url": "https://files.pythonhosted.org/packages/46/fa/d7666a766f5617ca1888cb29bccbdb4ab285f845280c31e7c534c8657c27/nmmn-1.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-03-02 20:15:11",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "rsnemmen",
    "github_project": "nmmn",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "nmmn"
}
        
Elapsed time: 0.63930s