`nmmn` package
================
Tools for astronomy, data analysis, time series, numerical simulations, gamma-ray astronomy and more! These are modules I wrote which I find useful—for whatever reason—in my research.
List of modules available ([more info here](http://rsnemmen.github.io/nmmn/)):
* `astro`: astronomy
* `dsp`: signal processing
* `lsd`: misc. operations on arrays, lists, dictionaries and sets
* `stats`: statistical methods
* [`sed`: spectral energy distributions](./docs/SEDs.ipynb)
* `plots`: custom plots
* `fermi`: Fermi LAT analysis methods
* `bayes`: Bayesian tools for dealing with posterior distributions
* `grmhd`: tools for dealing with GRMHD numerical simulations
Very basic [documentation](http://rsnemmen.github.io/nmmn/) for the package. Generated with Sphinx.
# Installation
You have a couple of options to install the module:
### 1. Install using `pip`:
```
pip install nmmn
```
### 2. Install the module on the system’s python library path:
```
git clone https://github.com/rsnemmen/nmmn.git
cd nmmn
python setup.py install
```
### 3. Install the package with a symlink, so that changes to the source files will be immediately available:
```
git clone https://github.com/rsnemmen/nmmn.git
cd nmmn
python setup.py develop
```
This last method is preferred if you want the latest, bleeding-edge updates in the repo. You may need to run the last command with `sudo`.
## Updating
If you installed with `pip` (method 1), to upgrade the package to the latest stable version use
pip install --upgrade nmmn
If you installed with the `setup.py` script and the `develop` option (method 3), use
cd /path/to/nmmn
git pull
# Usage
First import the specific module that you want to use:
import nmmn.lsd
Then call the method you need. For example, to remove all `nan` and `inf` elements from a `numpy` array:
```python
import numpy as np
# generates some array with nan and inf
x=np.array([1,2,np.nan,np.inf])
# removes strange elements
xok=nmmn.lsd.delweird(x)
```
For more examples, please refer to the [examples doc](examples.md).
# TODO
* [x] need more examples of how to use the modules
* [x] add IFU data cubes method (refer to [ifscube](https://ifscube.readthedocs.io/en/latest/))
# License
See `LICENSE` file.
If you have suggestions of improvements, by all means please contribute with a pull request! :)
The MIT License (MIT). Copyright (c) 2020 [Rodrigo Nemmen](http://rodrigonemmen.com)
[Visit the author's web page](https://rodrigonemmen.com/) and/or follow him on twitter ([@nemmen](https://twitter.com/nemmen)).
Raw data
{
"_id": null,
"home_page": "https://github.com/rsnemmen/nmmn",
"name": "nmmn",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "science,statistics,signal-processing,numerical-methods,astronomy,numerical-simulations,astrophysics,mhd,grmhd",
"author": "Rodrigo Nemmen",
"author_email": "rodrigo.nemmen@iag.usp.br",
"download_url": "https://files.pythonhosted.org/packages/46/fa/d7666a766f5617ca1888cb29bccbdb4ab285f845280c31e7c534c8657c27/nmmn-1.2.1.tar.gz",
"platform": null,
"description": "`nmmn` package\n================\n\nTools for astronomy, data analysis, time series, numerical simulations, gamma-ray astronomy and more! These are modules I wrote which I find useful\u2014for whatever reason\u2014in my research.\n\nList of modules available ([more info here](http://rsnemmen.github.io/nmmn/)):\n\n* `astro`: astronomy\n* `dsp`: signal processing\n* `lsd`: misc. operations on arrays, lists, dictionaries and sets\n* `stats`: statistical methods\n* [`sed`: spectral energy distributions](./docs/SEDs.ipynb)\n* `plots`: custom plots\n* `fermi`: Fermi LAT analysis methods\n* `bayes`: Bayesian tools for dealing with posterior distributions\n* `grmhd`: tools for dealing with GRMHD numerical simulations\n\nVery basic [documentation](http://rsnemmen.github.io/nmmn/) for the package. Generated with Sphinx.\n\n# Installation\n\nYou have a couple of options to install the module:\n\n### 1. Install using `pip`:\n\n```\npip install nmmn\n```\n\n\n### 2. Install the module on the system\u2019s python library path: \n\n```\ngit clone https://github.com/rsnemmen/nmmn.git\ncd nmmn\npython setup.py install\n```\n\n### 3. Install the package with a symlink, so that changes to the source files will be immediately available:\n\n```\ngit clone https://github.com/rsnemmen/nmmn.git\ncd nmmn\npython setup.py develop\n```\n\nThis last method is preferred if you want the latest, bleeding-edge updates in the repo. You may need to run the last command with `sudo`.\n\n## Updating\n\nIf you installed with `pip` (method 1), to upgrade the package to the latest stable version use\n\n pip install --upgrade nmmn\n\nIf you installed with the `setup.py` script and the `develop` option (method 3), use\n\n cd /path/to/nmmn\n git pull\n\n# Usage\n\nFirst import the specific module that you want to use:\n\n import nmmn.lsd\n\nThen call the method you need. For example, to remove all `nan` and `inf` elements from a `numpy` array:\n\n```python\nimport numpy as np\n\n# generates some array with nan and inf\nx=np.array([1,2,np.nan,np.inf])\n\n# removes strange elements\nxok=nmmn.lsd.delweird(x)\n```\n\nFor more examples, please refer to the [examples doc](examples.md).\n\n# TODO\n\n* [x] need more examples of how to use the modules\n* [x] add IFU data cubes method (refer to [ifscube](https://ifscube.readthedocs.io/en/latest/))\n\n# License\n\nSee `LICENSE` file.\n\nIf you have suggestions of improvements, by all means please contribute with a pull request! :)\n\nThe MIT License (MIT). Copyright (c) 2020 [Rodrigo Nemmen](http://rodrigonemmen.com)\n\n[Visit the author's web page](https://rodrigonemmen.com/) and/or follow him on twitter ([@nemmen](https://twitter.com/nemmen)).\n",
"bugtrack_url": null,
"license": "MIT License",
"summary": "Miscellaneous methods for astronomy, dealing with arrays, statistical distributions and computing goodness-of-fit",
"version": "1.2.1",
"project_urls": {
"Download": "https://github.com/rsnemmen/nmmn/archive/1.2.1.tar.gz",
"Homepage": "https://github.com/rsnemmen/nmmn"
},
"split_keywords": [
"science",
"statistics",
"signal-processing",
"numerical-methods",
"astronomy",
"numerical-simulations",
"astrophysics",
"mhd",
"grmhd"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "337e72bbe38c6f4d5e2e6ba5092c65b0e065c10d6994a2d4853a729630260f69",
"md5": "f23bead52c9fe64261679c4892937c08",
"sha256": "a7a6747f443deac03f910b08236b987278f2a66e1b8a61abd8acb77a1c164202"
},
"downloads": -1,
"filename": "nmmn-1.2.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "f23bead52c9fe64261679c4892937c08",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 78746,
"upload_time": "2023-03-02T20:15:05",
"upload_time_iso_8601": "2023-03-02T20:15:05.118848Z",
"url": "https://files.pythonhosted.org/packages/33/7e/72bbe38c6f4d5e2e6ba5092c65b0e065c10d6994a2d4853a729630260f69/nmmn-1.2.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "46fad7666a766f5617ca1888cb29bccbdb4ab285f845280c31e7c534c8657c27",
"md5": "4065a0924bacbfb9b61a6c205b7177f5",
"sha256": "e4608cec3272ee84e90d39cec8c0e21d4dad8394b721d059db07adea7c687835"
},
"downloads": -1,
"filename": "nmmn-1.2.1.tar.gz",
"has_sig": false,
"md5_digest": "4065a0924bacbfb9b61a6c205b7177f5",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 76292,
"upload_time": "2023-03-02T20:15:11",
"upload_time_iso_8601": "2023-03-02T20:15:11.214581Z",
"url": "https://files.pythonhosted.org/packages/46/fa/d7666a766f5617ca1888cb29bccbdb4ab285f845280c31e7c534c8657c27/nmmn-1.2.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-03-02 20:15:11",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "rsnemmen",
"github_project": "nmmn",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "nmmn"
}