nn-error-metrics


Namenn-error-metrics JSON
Version 1.0.1 PyPI version JSON
download
home_pagehttps://github.com/arif-x/nn-error_metrics
SummaryA collection of neural network machine learning error metrics.
upload_time2024-03-29 15:16:08
maintainerNone
docs_urlNone
authorAriffudin
requires_pythonNone
licenseMIT
keywords nn neural-network metrics nn-error_metrics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Example Usage
```
import numpy as np
from nn_error_metrics import (
    mean_absolute_percentage_error,
    mean_absolute_error,
    mean_squared_error,
    root_mean_squared_error,
    binary_cross_entropy,
    categorical_correntropy,
    sparse_categorical_crossentropy
)

actual = np.array([10, 20, 30, 40, 50])
predicted = np.array([12, 18, 28, 41, 48])

print("Mean Absolute Percentage Error (MAPE):", mean_absolute_percentage_error(actual, predicted))
print("Mean Absolute Error (MAE):", mean_absolute_error(actual, predicted))
print("Mean Squared Error (MSE):", mean_squared_error(actual, predicted))
print("Root Mean Squared Error (RMSE):", root_mean_squared_error(actual, predicted))

actual = np.array([1, 0, 1, 1, 0])
predicted = np.array([0.9, 0.2, 0.8, 0.6, 0.3])
print("Binary Cross Entropy (BCE):", binary_cross_entropy(actual, predicted))

actual = np.array([[0, 1], [1, 0], [0, 1], [0, 1], [1, 0]])
predicted = np.array([[0.1, 0.9], [0.8, 0.2], [0.3, 0.7], [0.6, 0.4], [0.9, 0.1]])
print("Categorical Correntropy (CC):", categorical_correntropy(actual, predicted))

actual = np.array([1, 0, 1, 1, 0])
predicted = np.array([[0.1, 0.9], [0.8, 0.2], [0.3, 0.7], [0.6, 0.4], [0.9, 0.1]])
print("Sparse Categorical Correntropy (SCC):", sparse_categorical_crossentropy(actual, predicted))

```


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/arif-x/nn-error_metrics",
    "name": "nn-error-metrics",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "nn neural-network metrics nn-error_metrics",
    "author": "Ariffudin",
    "author_email": "sudo.ariffudin@email.com",
    "download_url": "https://files.pythonhosted.org/packages/c6/67/934812fb976f37f6e25cd1c7d2fbed56a79bf3d37097f5ab6545f1c6a910/nn_error_metrics-1.0.1.tar.gz",
    "platform": null,
    "description": "# Example Usage\n```\nimport numpy as np\nfrom nn_error_metrics import (\n    mean_absolute_percentage_error,\n    mean_absolute_error,\n    mean_squared_error,\n    root_mean_squared_error,\n    binary_cross_entropy,\n    categorical_correntropy,\n    sparse_categorical_crossentropy\n)\n\nactual = np.array([10, 20, 30, 40, 50])\npredicted = np.array([12, 18, 28, 41, 48])\n\nprint(\"Mean Absolute Percentage Error (MAPE):\", mean_absolute_percentage_error(actual, predicted))\nprint(\"Mean Absolute Error (MAE):\", mean_absolute_error(actual, predicted))\nprint(\"Mean Squared Error (MSE):\", mean_squared_error(actual, predicted))\nprint(\"Root Mean Squared Error (RMSE):\", root_mean_squared_error(actual, predicted))\n\nactual = np.array([1, 0, 1, 1, 0])\npredicted = np.array([0.9, 0.2, 0.8, 0.6, 0.3])\nprint(\"Binary Cross Entropy (BCE):\", binary_cross_entropy(actual, predicted))\n\nactual = np.array([[0, 1], [1, 0], [0, 1], [0, 1], [1, 0]])\npredicted = np.array([[0.1, 0.9], [0.8, 0.2], [0.3, 0.7], [0.6, 0.4], [0.9, 0.1]])\nprint(\"Categorical Correntropy (CC):\", categorical_correntropy(actual, predicted))\n\nactual = np.array([1, 0, 1, 1, 0])\npredicted = np.array([[0.1, 0.9], [0.8, 0.2], [0.3, 0.7], [0.6, 0.4], [0.9, 0.1]])\nprint(\"Sparse Categorical Correntropy (SCC):\", sparse_categorical_crossentropy(actual, predicted))\n\n```\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A collection of neural network machine learning error metrics.",
    "version": "1.0.1",
    "project_urls": {
        "Homepage": "https://github.com/arif-x/nn-error_metrics",
        "Source": "https://github.com/arif-x/nn-error_metrics",
        "Source Code": "https://github.com/arif-x/nn-error_metrics"
    },
    "split_keywords": [
        "nn",
        "neural-network",
        "metrics",
        "nn-error_metrics"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "27cc3eb392132c5c3817906cbd4e2208729844b010de013da82fb4770c95ffcd",
                "md5": "54cde295baf3dcbdfe48eb85d70422c2",
                "sha256": "aab54ca0a09ef59a99dcbf7e204d9014bd588ef940583f475b0c4f360b5aab52"
            },
            "downloads": -1,
            "filename": "nn_error_metrics-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "54cde295baf3dcbdfe48eb85d70422c2",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 2828,
            "upload_time": "2024-03-29T15:16:06",
            "upload_time_iso_8601": "2024-03-29T15:16:06.250799Z",
            "url": "https://files.pythonhosted.org/packages/27/cc/3eb392132c5c3817906cbd4e2208729844b010de013da82fb4770c95ffcd/nn_error_metrics-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c667934812fb976f37f6e25cd1c7d2fbed56a79bf3d37097f5ab6545f1c6a910",
                "md5": "58c391d2ab691f2d48e17b2f8b0faf0f",
                "sha256": "9239bedd1e65913d6c93e116a6dd6b34812049a7fa614cc2e7b3fe96315c647a"
            },
            "downloads": -1,
            "filename": "nn_error_metrics-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "58c391d2ab691f2d48e17b2f8b0faf0f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 2108,
            "upload_time": "2024-03-29T15:16:08",
            "upload_time_iso_8601": "2024-03-29T15:16:08.369304Z",
            "url": "https://files.pythonhosted.org/packages/c6/67/934812fb976f37f6e25cd1c7d2fbed56a79bf3d37097f5ab6545f1c6a910/nn_error_metrics-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-29 15:16:08",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "arif-x",
    "github_project": "nn-error_metrics",
    "github_not_found": true,
    "lcname": "nn-error-metrics"
}
        
Elapsed time: 3.48671s