nn-metrics


Namenn-metrics JSON
Version 1.0.0 PyPI version JSON
download
home_pagehttps://github.com/arif-x/nn-metrics
SummaryA collection of neural network machine learning error metrics.
upload_time2024-03-29 14:17:03
maintainerNone
docs_urlNone
authorAriffudin
requires_pythonNone
licenseMIT
keywords nn neural-network metrics nn-metrics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Example Usage
```
# Import the required functions from your package
from nn_metrics.metrics import (
    mean_absolute_percentage_error,
    mean_absolute_error,
    mean_squared_error,
    root_mean_squared_error,
    binary_cross_entropy,
    categorical_correntropy,
    sparse_categorical_crossentropy
)

# Example usage:
actual = [10, 20, 30, 40, 50]
predicted = [12, 18, 28, 41, 48]

# Calculate and print error metrics
print("Mean Absolute Percentage Error (MAPE):", mean_absolute_percentage_error(actual, predicted))
print("Mean Absolute Error (MAE):", mean_absolute_error(actual, predicted))
print("Mean Squared Error (MSE):", mean_squared_error(actual, predicted))
print("Root Mean Squared Error (RMSE):", root_mean_squared_error(actual, predicted))
```


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/arif-x/nn-metrics",
    "name": "nn-metrics",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "nn neural-network metrics nn-metrics",
    "author": "Ariffudin",
    "author_email": "sudo.ariffudin@email.com",
    "download_url": "https://files.pythonhosted.org/packages/0f/09/2ea6d6c13e8d7d613642ceacc0c7ce2492fe4f47ec55015314dadf4a5d94/nn_metrics-1.0.0.tar.gz",
    "platform": null,
    "description": "# Example Usage\n```\n# Import the required functions from your package\nfrom nn_metrics.metrics import (\n    mean_absolute_percentage_error,\n    mean_absolute_error,\n    mean_squared_error,\n    root_mean_squared_error,\n    binary_cross_entropy,\n    categorical_correntropy,\n    sparse_categorical_crossentropy\n)\n\n# Example usage:\nactual = [10, 20, 30, 40, 50]\npredicted = [12, 18, 28, 41, 48]\n\n# Calculate and print error metrics\nprint(\"Mean Absolute Percentage Error (MAPE):\", mean_absolute_percentage_error(actual, predicted))\nprint(\"Mean Absolute Error (MAE):\", mean_absolute_error(actual, predicted))\nprint(\"Mean Squared Error (MSE):\", mean_squared_error(actual, predicted))\nprint(\"Root Mean Squared Error (RMSE):\", root_mean_squared_error(actual, predicted))\n```\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A collection of neural network machine learning error metrics.",
    "version": "1.0.0",
    "project_urls": {
        "Homepage": "https://github.com/arif-x/nn-metrics",
        "Source": "https://github.com/arif-x/nn-metrics",
        "Source Code": "https://github.com/arif-x/nn-metrics"
    },
    "split_keywords": [
        "nn",
        "neural-network",
        "metrics",
        "nn-metrics"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "110334731703673486885eb35d618b67cc0b2abb88b54058aef106f5cd18db79",
                "md5": "cf77a949a758873702ae499135f5545f",
                "sha256": "7406e470b956375549c7cb9328dcba558f0af8dc17d91ea62e81272a7b1b1ce7"
            },
            "downloads": -1,
            "filename": "nn_metrics-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "cf77a949a758873702ae499135f5545f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 2085,
            "upload_time": "2024-03-29T14:17:01",
            "upload_time_iso_8601": "2024-03-29T14:17:01.430029Z",
            "url": "https://files.pythonhosted.org/packages/11/03/34731703673486885eb35d618b67cc0b2abb88b54058aef106f5cd18db79/nn_metrics-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0f092ea6d6c13e8d7d613642ceacc0c7ce2492fe4f47ec55015314dadf4a5d94",
                "md5": "d4f79095c595e3fdcc3a986f224c0a06",
                "sha256": "049f665cbde0c0fb5a82e403d5c6f198d18625fc798ff05a501d4763e827dda3"
            },
            "downloads": -1,
            "filename": "nn_metrics-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "d4f79095c595e3fdcc3a986f224c0a06",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 1697,
            "upload_time": "2024-03-29T14:17:03",
            "upload_time_iso_8601": "2024-03-29T14:17:03.881533Z",
            "url": "https://files.pythonhosted.org/packages/0f/09/2ea6d6c13e8d7d613642ceacc0c7ce2492fe4f47ec55015314dadf4a5d94/nn_metrics-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-29 14:17:03",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "arif-x",
    "github_project": "nn-metrics",
    "github_not_found": true,
    "lcname": "nn-metrics"
}
        
Elapsed time: 1.63251s