# Example Usage
```
# Import the required functions from your package
from nn_metrics.metrics import (
mean_absolute_percentage_error,
mean_absolute_error,
mean_squared_error,
root_mean_squared_error,
binary_cross_entropy,
categorical_correntropy,
sparse_categorical_crossentropy
)
# Example usage:
actual = [10, 20, 30, 40, 50]
predicted = [12, 18, 28, 41, 48]
# Calculate and print error metrics
print("Mean Absolute Percentage Error (MAPE):", mean_absolute_percentage_error(actual, predicted))
print("Mean Absolute Error (MAE):", mean_absolute_error(actual, predicted))
print("Mean Squared Error (MSE):", mean_squared_error(actual, predicted))
print("Root Mean Squared Error (RMSE):", root_mean_squared_error(actual, predicted))
```
Raw data
{
"_id": null,
"home_page": "https://github.com/arif-x/nn-metrics",
"name": "nn-metrics",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "nn neural-network metrics nn-metrics",
"author": "Ariffudin",
"author_email": "sudo.ariffudin@email.com",
"download_url": "https://files.pythonhosted.org/packages/0f/09/2ea6d6c13e8d7d613642ceacc0c7ce2492fe4f47ec55015314dadf4a5d94/nn_metrics-1.0.0.tar.gz",
"platform": null,
"description": "# Example Usage\n```\n# Import the required functions from your package\nfrom nn_metrics.metrics import (\n mean_absolute_percentage_error,\n mean_absolute_error,\n mean_squared_error,\n root_mean_squared_error,\n binary_cross_entropy,\n categorical_correntropy,\n sparse_categorical_crossentropy\n)\n\n# Example usage:\nactual = [10, 20, 30, 40, 50]\npredicted = [12, 18, 28, 41, 48]\n\n# Calculate and print error metrics\nprint(\"Mean Absolute Percentage Error (MAPE):\", mean_absolute_percentage_error(actual, predicted))\nprint(\"Mean Absolute Error (MAE):\", mean_absolute_error(actual, predicted))\nprint(\"Mean Squared Error (MSE):\", mean_squared_error(actual, predicted))\nprint(\"Root Mean Squared Error (RMSE):\", root_mean_squared_error(actual, predicted))\n```\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A collection of neural network machine learning error metrics.",
"version": "1.0.0",
"project_urls": {
"Homepage": "https://github.com/arif-x/nn-metrics",
"Source": "https://github.com/arif-x/nn-metrics",
"Source Code": "https://github.com/arif-x/nn-metrics"
},
"split_keywords": [
"nn",
"neural-network",
"metrics",
"nn-metrics"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "110334731703673486885eb35d618b67cc0b2abb88b54058aef106f5cd18db79",
"md5": "cf77a949a758873702ae499135f5545f",
"sha256": "7406e470b956375549c7cb9328dcba558f0af8dc17d91ea62e81272a7b1b1ce7"
},
"downloads": -1,
"filename": "nn_metrics-1.0.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "cf77a949a758873702ae499135f5545f",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 2085,
"upload_time": "2024-03-29T14:17:01",
"upload_time_iso_8601": "2024-03-29T14:17:01.430029Z",
"url": "https://files.pythonhosted.org/packages/11/03/34731703673486885eb35d618b67cc0b2abb88b54058aef106f5cd18db79/nn_metrics-1.0.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0f092ea6d6c13e8d7d613642ceacc0c7ce2492fe4f47ec55015314dadf4a5d94",
"md5": "d4f79095c595e3fdcc3a986f224c0a06",
"sha256": "049f665cbde0c0fb5a82e403d5c6f198d18625fc798ff05a501d4763e827dda3"
},
"downloads": -1,
"filename": "nn_metrics-1.0.0.tar.gz",
"has_sig": false,
"md5_digest": "d4f79095c595e3fdcc3a986f224c0a06",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 1697,
"upload_time": "2024-03-29T14:17:03",
"upload_time_iso_8601": "2024-03-29T14:17:03.881533Z",
"url": "https://files.pythonhosted.org/packages/0f/09/2ea6d6c13e8d7d613642ceacc0c7ce2492fe4f47ec55015314dadf4a5d94/nn_metrics-1.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-03-29 14:17:03",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "arif-x",
"github_project": "nn-metrics",
"github_not_found": true,
"lcname": "nn-metrics"
}