nnbma


Namennbma JSON
Version 1.0.2 PyPI version JSON
download
home_pagehttps://github.com/einigl/ism-model-nn-approximation
SummaryNeural network-based model approximation (nnbma)
upload_time2024-10-02 11:35:29
maintainerNone
docs_urlNone
authorLucas Einig
requires_python>=3.8
licenseNone
keywords machine learning neural network
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Neural network-based model approximation (nnbma)

[![PyPI version](https://badge.fury.io/py/nnbma.svg)](https://badge.fury.io/py/nnbma)
[![Documentation Status](https://readthedocs.org/projects/ism-model-nn-approximation/badge/?version=latest)](https://ism-model-nn-approximation.readthedocs.io/en/latest/?badge=latest)
![test coverage](./docs/coverage.svg)

Neural network-based model approximation `nnbma` is a Python package that handle the creation and the training of neural networks to approximate numerical models.
In \[1\], it was designed and used to derive an approximation of the Meudon PDR code, a complex astrophysical numerical code.

## Installation

To build your own neural network for your numerical model, we recommend installing the package.
The package can be installed with `pip`:

```shell
pip install nnbma
```

To reproduce the results from \[1\], clone the repo with

```shell
git clone git@github.com:einigl/ism-model-nn-approximation.git
```

Alternatively, you can also download a zip file.

This package relies on _PyTorch_ to build neural networks.
It enables to evaluate any neural network, its gradient, and its Hessian matrix efficiently.

If you do not have a Python environment compatible with the above dependencies, we advise you to create a specific conda environment to use this code (<https://conda.io/projects/conda/en/latest/user-guide/>).

## References

\[1\] Palud, P. & Einig, L. & Le Petit, F. & Bron, E. & Chainais, P. & Chanussot, J. & Pety, J. & Thouvenin, P.-A. & Languignon, D. & Beslić, I. & G. Santa-Maria, M. & Orkisz, J.H. & Ségal, L. & Zakardjian, A. & Bardeau, S. & Gerin, M. & Goicoechea, J.R. & Gratier, P. & Guzman, V. (2023). Neural network-based emulation of interstellar medium models. Astronomy & Astrophysics. 10.1051/0004-6361/202347074.


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/einigl/ism-model-nn-approximation",
    "name": "nnbma",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "machine learning, neural network",
    "author": "Lucas Einig",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/4e/d9/267e9c49f6c585d12f2f220843f2e11a3aaa768d6d3f223b3e0a06ba929b/nnbma-1.0.2.tar.gz",
    "platform": null,
    "description": "# Neural network-based model approximation (nnbma)\n\n[![PyPI version](https://badge.fury.io/py/nnbma.svg)](https://badge.fury.io/py/nnbma)\n[![Documentation Status](https://readthedocs.org/projects/ism-model-nn-approximation/badge/?version=latest)](https://ism-model-nn-approximation.readthedocs.io/en/latest/?badge=latest)\n![test coverage](./docs/coverage.svg)\n\nNeural network-based model approximation `nnbma` is a Python package that handle the creation and the training of neural networks to approximate numerical models.\nIn \\[1\\], it was designed and used to derive an approximation of the Meudon PDR code, a complex astrophysical numerical code.\n\n## Installation\n\nTo build your own neural network for your numerical model, we recommend installing the package.\nThe package can be installed with `pip`:\n\n```shell\npip install nnbma\n```\n\nTo reproduce the results from \\[1\\], clone the repo with\n\n```shell\ngit clone git@github.com:einigl/ism-model-nn-approximation.git\n```\n\nAlternatively, you can also download a zip file.\n\nThis package relies on _PyTorch_ to build neural networks.\nIt enables to evaluate any neural network, its gradient, and its Hessian matrix efficiently.\n\nIf you do not have a Python environment compatible with the above dependencies, we advise you to create a specific conda environment to use this code (<https://conda.io/projects/conda/en/latest/user-guide/>).\n\n## References\n\n\\[1\\] Palud, P. & Einig, L. & Le Petit, F. & Bron, E. & Chainais, P. & Chanussot, J. & Pety, J. & Thouvenin, P.-A. & Languignon, D. & Besli\u0107, I. & G. Santa-Maria, M. & Orkisz, J.H. & S\u00e9gal, L. & Zakardjian, A. & Bardeau, S. & Gerin, M. & Goicoechea, J.R. & Gratier, P. & Guzman, V. (2023). Neural network-based emulation of interstellar medium models. Astronomy & Astrophysics. 10.1051/0004-6361/202347074.\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Neural network-based model approximation (nnbma)",
    "version": "1.0.2",
    "project_urls": {
        "Bug Tracker": "https://github.com/einigl/ism-model-nn-approximation/issues",
        "Documentation": "https://ism-model-nn-approximation.readthedocs.io/en/latest/",
        "Homepage": "https://github.com/einigl/ism-model-nn-approximation",
        "Repository": "https://github.com/einigl/ism-model-nn-approximation"
    },
    "split_keywords": [
        "machine learning",
        " neural network"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8ec259e786bdccc5fc1963bd85a390fe4f57c6008d71721e35b4e16215d6d681",
                "md5": "34382ce81c6b2c809b02e507d0cfb25b",
                "sha256": "b2454637ce02c3ab41433e7c8b1eb3595982560b43f97f15724e3ba0957b1c5d"
            },
            "downloads": -1,
            "filename": "nnbma-1.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "34382ce81c6b2c809b02e507d0cfb25b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 37818,
            "upload_time": "2024-10-02T11:35:28",
            "upload_time_iso_8601": "2024-10-02T11:35:28.358153Z",
            "url": "https://files.pythonhosted.org/packages/8e/c2/59e786bdccc5fc1963bd85a390fe4f57c6008d71721e35b4e16215d6d681/nnbma-1.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4ed9267e9c49f6c585d12f2f220843f2e11a3aaa768d6d3f223b3e0a06ba929b",
                "md5": "9dea0bebf59aaed9f3c6c45bf3ee8e97",
                "sha256": "118369ddd9fcf43f0c315166c5944c19dfb2779de5329eaf5a7cdcda1c83cac3"
            },
            "downloads": -1,
            "filename": "nnbma-1.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "9dea0bebf59aaed9f3c6c45bf3ee8e97",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 28474,
            "upload_time": "2024-10-02T11:35:29",
            "upload_time_iso_8601": "2024-10-02T11:35:29.375989Z",
            "url": "https://files.pythonhosted.org/packages/4e/d9/267e9c49f6c585d12f2f220843f2e11a3aaa768d6d3f223b3e0a06ba929b/nnbma-1.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-02 11:35:29",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "einigl",
    "github_project": "ism-model-nn-approximation",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "nnbma"
}
        
Elapsed time: 3.55057s