# <a href="https://nnext.ai/"><img src="https://d3g1vr8yw3euzd.cloudfront.net/nnext-ultra-wide-tingle.png" alt="NNext Python Client"></a>
## About
The NNext Python Client.
NNext is a
* ⚡ blazingly fast
* 🔍 nearest-neighbors vector search engine
<a href="https://twitter.com/intent/follow?screen_name=nnextai"><img src="https://img.shields.io/badge/Follow-nnextai-blue.svg?style=flat&logo=twitter"></a>
[Installation](#installation) | [Quick Start](#quick-start) | [Documentation](#documentation)
## Installation
To install the pynnext client, activate a virtual environment, and install via pip:
### Supported Python Versions
```shell
Python >= 3.7, < 3.11
```
#### Mac/Linux
```shell
pip install virtualenv
virtualenv <your-env>
source <your-env>/bin/activate
<your-env>/bin/pip install nnext
```
#### Windows
```shell
pip install virtualenv
virtualenv <your-env>
<your-env>\Scripts\activate
<your-env>\Scripts\pip.exe install nnext
```
## Quick Start
In order start interacting with NNext, you need to obtain a client
here [https://console.nnext.ai/](https://console.nnext.ai/).
Here's a quick example showcasing how you can create an index, insert vectors/documents and search among them via NNext.
Let's begin by installing the Connecting to NNext.
```sql
SELECT images.uid,
images.name,
images.vector < - > 'VECTOR(0.19, 0.81, 0.75, 0.11)'::vector AS dist
FROM nnext-public-data.images.laion
ORDER BY
dist
LIMIT 100
```
```python
import nnext
nnclient = nnext.NNextClient(api_key="NNEXT_API_KEY")
# Perform a query.
QUERY = """
SELECT images.uid, images.name,
images.vector <-> 'VECTOR(0.19, 0.81, 0.75, 0.11)'::vector AS dist
FROM nnext-public-data.images.laion
ORDER BY
dist
LIMIT 100;
"""
query_job = nnclient.query(QUERY) # API request
rows = query_job.result() # Waits for query to finish
for row in rows:
print(row.name)
```
## Documentation
More documentation is available here here [https://nnext.ai/docs](https://nnext.ai/docs).:
<a href="https://nnext.ai/docs" target="_blank" rel="noopener noreferrer"><img src="https://d3g1vr8yw3euzd.cloudfront.net/3.png" height="100"></a>
Raw data
{
"_id": null,
"home_page": "https://nnext.io/docs/Python-22a9be22c5cf4869bda849e3f06c0993",
"name": "nnext",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7,<4.0",
"maintainer_email": "",
"keywords": "neural search,semantic,search,engine,client",
"author": "NNext Team",
"author_email": "team@nnext.ai",
"download_url": "https://files.pythonhosted.org/packages/22/92/e16e3f06320c17b6933b4bb01c3c700c44c4e26bf1e7a1f77c05baa943af/nnext-0.0.43.tar.gz",
"platform": null,
"description": "# <a href=\"https://nnext.ai/\"><img src=\"https://d3g1vr8yw3euzd.cloudfront.net/nnext-ultra-wide-tingle.png\" alt=\"NNext Python Client\"></a>\n\n## About\n\nThe NNext Python Client.\n\nNNext is a\n\n* \u26a1 blazingly fast\n* \ud83d\udd0d nearest-neighbors vector search engine\n\n<a href=\"https://twitter.com/intent/follow?screen_name=nnextai\"><img src=\"https://img.shields.io/badge/Follow-nnextai-blue.svg?style=flat&logo=twitter\"></a>\n\n[Installation](#installation) | [Quick Start](#quick-start) | [Documentation](#documentation)\n\n## Installation\n\nTo install the pynnext client, activate a virtual environment, and install via pip:\n\n### Supported Python Versions\n\n```shell\nPython >= 3.7, < 3.11\n```\n\n#### Mac/Linux\n\n```shell\npip install virtualenv\nvirtualenv <your-env>\nsource <your-env>/bin/activate\n<your-env>/bin/pip install nnext\n```\n\n#### Windows\n\n```shell\npip install virtualenv\nvirtualenv <your-env>\n<your-env>\\Scripts\\activate\n<your-env>\\Scripts\\pip.exe install nnext\n```\n\n## Quick Start\n\nIn order start interacting with NNext, you need to obtain a client\nhere [https://console.nnext.ai/](https://console.nnext.ai/).\n\nHere's a quick example showcasing how you can create an index, insert vectors/documents and search among them via NNext.\n\nLet's begin by installing the Connecting to NNext.\n\n```sql\nSELECT images.uid,\n images.name,\n images.vector < - > 'VECTOR(0.19, 0.81, 0.75, 0.11)'::vector AS dist\nFROM nnext-public-data.images.laion\nORDER BY\n dist\n LIMIT 100\n```\n\n```python\nimport nnext\n\nnnclient = nnext.NNextClient(api_key=\"NNEXT_API_KEY\")\n\n# Perform a query.\nQUERY = \"\"\"\n SELECT images.uid, images.name,\n images.vector <-> 'VECTOR(0.19, 0.81, 0.75, 0.11)'::vector AS dist\n FROM nnext-public-data.images.laion\n ORDER BY\n dist\n LIMIT 100;\n \"\"\"\nquery_job = nnclient.query(QUERY) # API request\nrows = query_job.result() # Waits for query to finish\n\nfor row in rows:\n print(row.name)\n```\n\n## Documentation\n\nMore documentation is available here here [https://nnext.ai/docs](https://nnext.ai/docs).:\n\n<a href=\"https://nnext.ai/docs\" target=\"_blank\" rel=\"noopener noreferrer\"><img src=\"https://d3g1vr8yw3euzd.cloudfront.net/3.png\" height=\"100\"></a>\n\n",
"bugtrack_url": null,
"license": "",
"summary": "Client library for the NNext Neural search engine",
"version": "0.0.43",
"split_keywords": [
"neural search",
"semantic",
"search",
"engine",
"client"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "096f6ef79c49a2bfac8a7f319ca685373e8785d3a501de3432b6609b17086054",
"md5": "99de4e7d309ce7457404436ac640114c",
"sha256": "ac5475a9bd7f2f6a3fcc0bcc47464ab0855b18693e7b756d2ef5d0a7cd10af94"
},
"downloads": -1,
"filename": "nnext-0.0.43-py3-none-any.whl",
"has_sig": false,
"md5_digest": "99de4e7d309ce7457404436ac640114c",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7,<4.0",
"size": 60511,
"upload_time": "2023-02-07T16:53:30",
"upload_time_iso_8601": "2023-02-07T16:53:30.724605Z",
"url": "https://files.pythonhosted.org/packages/09/6f/6ef79c49a2bfac8a7f319ca685373e8785d3a501de3432b6609b17086054/nnext-0.0.43-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "2292e16e3f06320c17b6933b4bb01c3c700c44c4e26bf1e7a1f77c05baa943af",
"md5": "791a6d1cc06aab367c6310cd4446d509",
"sha256": "af47e9cdd6cc44a815943623ddf42c075993183797f0fa5c8a18079b7b21dc7b"
},
"downloads": -1,
"filename": "nnext-0.0.43.tar.gz",
"has_sig": false,
"md5_digest": "791a6d1cc06aab367c6310cd4446d509",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7,<4.0",
"size": 48753,
"upload_time": "2023-02-07T16:53:32",
"upload_time_iso_8601": "2023-02-07T16:53:32.270984Z",
"url": "https://files.pythonhosted.org/packages/22/92/e16e3f06320c17b6933b4bb01c3c700c44c4e26bf1e7a1f77c05baa943af/nnext-0.0.43.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-02-07 16:53:32",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "nnext"
}