nnoir-onnx


Namennoir-onnx JSON
Version 1.5.0 PyPI version JSON
download
home_pagehttps://github.com/Idein/nnoir/tree/master/nnoir-onnx
SummaryONNX to NNOIR Converter
upload_time2024-11-27 02:37:03
maintainerNone
docs_urlNone
authorIdein Inc.
requires_python<4.0,>=3.9
licenseMIT
keywords nnoir onnx machine learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # nnoir-onnx

nnoir-onnx is a converter from ONNX model to NNOIR model.

## Install
From [PyPI](https://pypi.org/project/nnoir-onnx/):

```
pip install nnoir-onnx
```

From [Dockerhub](https://hub.docker.com/repository/docker/idein/nnoir-tools):

```
docker pull idein/nnoir-tools:20240208
```

## Example

~~~~bash
wget https://www.cntk.ai/OnnxModels/mnist/opset_7/mnist.tar.gz
tar xvzf mnist.tar.gz
onnx2nnoir -o model.nnoir mnist/model.onnx
~~~~

With docker:

```
docker run --rm -it -u $UID:$GID -v $(pwd):/work idein/nnoir-tools:20240208 onnx2nnoir --graph_name "mobilenet" -o mobilenetv2-1.0.nnoir mobilenetv2-1.0.onnx
```

## Supported ONNX Operators

* [Add](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Add)
* [AveragePool](https://github.com/onnx/onnx/blob/master/docs/Operators.md#AveragePool)
* [BatchNormalization](https://github.com/onnx/onnx/blob/master/docs/Operators.md#BatchNormalization)
    * `scale`, `B`, `mean`, and `var` must be `"constant"`
* [Clip](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Clip)
    * must be opset version 6 or 11
    * if opset version is 11
      * `max` must be `"constant"`
    * `min` must be `0`
* [Concat](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Concat)
* [Conv](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Conv)
    * `W` must be [Constant](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Constant) value or have initializer value
    * `b` must be [Constant](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Constant) value or have initializer value
* [Cos](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Cos)
* [Div](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Div)
    * 1st input must not be `"constant"`
* [Dropout](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Dropout)
    * equivalent identity function
* [Elu](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Elu)
* [Exp](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Exp)
* [Flatten](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Flatten)
* [Gemm](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Gemm)
    * `B` must be [Constant](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Constant) value or have initializer value
    * `C` must be [Constant](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Constant) value or have initializer value
* [GlobalAveragePool](https://github.com/onnx/onnx/blob/master/docs/Operators.md#GlobalAveragePool)
* [HardSigmoid](https://github.com/onnx/onnx/blob/main/docs/Operators.md#hardsigmoid)
* [HardSwish](https://github.com/onnx/onnx/blob/main/docs/Operators.md#hardswish)
* [LeakyRelu](https://github.com/onnx/onnx/blob/master/docs/Operators.md#LeakyRelu)
* [LRN](https://github.com/onnx/onnx/blob/master/docs/Operators.md#LRN)
* [LSTM](https://github.com/onnx/onnx/blob/master/docs/Operators.md#lstm)
    * only `seq_length == 1`
    * `direction` must be forward
    * Supported `activations` are below
        * `Sigmoid`
        * `Tanh`
        * `Relu`
    * Not support `clip` and `input_forget`
* [MatMul](https://github.com/onnx/onnx/blob/master/docs/Operators.md#MatMul)
* [MaxPool](https://github.com/onnx/onnx/blob/master/docs/Operators.md#MaxPool)
    * `ceil_mode = 1` is not supported
    * `dilations` must be array of 1.
* [Mul](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Mul)
* [Pad](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Pad)
    * `mode` must be `"constant"`
* [Pow](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Pow)
    * 2nd input must be `2.0`
* [PRelu](https://github.com/onnx/onnx/blob/master/docs/Operators.md#PRelu)
    * `slope` must be `"constant"` and a single value tensor
* [ReduceMean](https://github.com/onnx/onnx/blob/master/docs/Operators.md#reducemean)
* [ReduceSum](https://github.com/onnx/onnx/blob/master/docs/Operators.md#reducesum)
* [Relu](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Relu)
* [Reshape](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Reshape)
* [Resize](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Resize)
    * must be from opset version >= 11
    * `mode` must be `"linear"` or `"nearest"`
    * `nearest_mode` must be `"floor"`
    * `coordinate_transformation_mode` must be either `"pytorch_half_pixel"` or `"align_corners"` for `"linear"` mode
    * `coordinate_transformation_mode` must be either `"asymmetric"` for `"nearest"` mode
* [Sigmoid](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Sigmoid)
* [Sin](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Sin)
* [Slice](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Slice)
    * must be from opset version >= 10
    * `starts` must be [Constant](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Constant) value or have initializer value
    * `ends` must be [Constant](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Constant) value or have initializer value
    * `axes` must be [Constant](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Constant) value or have initializer value
    * `steps` is not supported
* [Softmax](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Softmax)
* [Split](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Split)
* [Sqrt](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Sqrt)
* [Squeeze](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Squeeze)
* [Sub](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Sub)
* [Sum](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Sum)
    * 2 inputs
* [Tan](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Tan)
* [Tanh](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Tanh)
* [Transpose](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Transpose)
* [Unsqueeze](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Unsqueeze)
* [Where](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Where)
  * `condition` must be [Constant](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Constant) value
  * `condition` must all true or all false
  * the input value not selected must be constant

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Idein/nnoir/tree/master/nnoir-onnx",
    "name": "nnoir-onnx",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": "nnoir, onnx, machine learning",
    "author": "Idein Inc.",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/ac/87/31809ef86a073a8ec1d21a195f4e9fbec6f8ba3b0ddf6f1671be5ddc9f45/nnoir_onnx-1.5.0.tar.gz",
    "platform": null,
    "description": "# nnoir-onnx\n\nnnoir-onnx is a converter from ONNX model to NNOIR model.\n\n## Install\nFrom [PyPI](https://pypi.org/project/nnoir-onnx/):\n\n```\npip install nnoir-onnx\n```\n\nFrom [Dockerhub](https://hub.docker.com/repository/docker/idein/nnoir-tools):\n\n```\ndocker pull idein/nnoir-tools:20240208\n```\n\n## Example\n\n~~~~bash\nwget https://www.cntk.ai/OnnxModels/mnist/opset_7/mnist.tar.gz\ntar xvzf mnist.tar.gz\nonnx2nnoir -o model.nnoir mnist/model.onnx\n~~~~\n\nWith docker:\n\n```\ndocker run --rm -it -u $UID:$GID -v $(pwd):/work idein/nnoir-tools:20240208 onnx2nnoir --graph_name \"mobilenet\" -o mobilenetv2-1.0.nnoir mobilenetv2-1.0.onnx\n```\n\n## Supported ONNX Operators\n\n* [Add](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Add)\n* [AveragePool](https://github.com/onnx/onnx/blob/master/docs/Operators.md#AveragePool)\n* [BatchNormalization](https://github.com/onnx/onnx/blob/master/docs/Operators.md#BatchNormalization)\n    * `scale`, `B`, `mean`, and `var` must be `\"constant\"`\n* [Clip](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Clip)\n    * must be opset version 6 or 11\n    * if opset version is 11\n      * `max` must be `\"constant\"`\n    * `min` must be `0`\n* [Concat](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Concat)\n* [Conv](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Conv)\n    * `W` must be [Constant](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Constant) value or have initializer value\n    * `b` must be [Constant](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Constant) value or have initializer value\n* [Cos](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Cos)\n* [Div](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Div)\n    * 1st input must not be `\"constant\"`\n* [Dropout](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Dropout)\n    * equivalent identity function\n* [Elu](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Elu)\n* [Exp](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Exp)\n* [Flatten](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Flatten)\n* [Gemm](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Gemm)\n    * `B` must be [Constant](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Constant) value or have initializer value\n    * `C` must be [Constant](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Constant) value or have initializer value\n* [GlobalAveragePool](https://github.com/onnx/onnx/blob/master/docs/Operators.md#GlobalAveragePool)\n* [HardSigmoid](https://github.com/onnx/onnx/blob/main/docs/Operators.md#hardsigmoid)\n* [HardSwish](https://github.com/onnx/onnx/blob/main/docs/Operators.md#hardswish)\n* [LeakyRelu](https://github.com/onnx/onnx/blob/master/docs/Operators.md#LeakyRelu)\n* [LRN](https://github.com/onnx/onnx/blob/master/docs/Operators.md#LRN)\n* [LSTM](https://github.com/onnx/onnx/blob/master/docs/Operators.md#lstm)\n    * only `seq_length == 1`\n    * `direction` must be forward\n    * Supported `activations` are below\n        * `Sigmoid`\n        * `Tanh`\n        * `Relu`\n    * Not support `clip` and `input_forget`\n* [MatMul](https://github.com/onnx/onnx/blob/master/docs/Operators.md#MatMul)\n* [MaxPool](https://github.com/onnx/onnx/blob/master/docs/Operators.md#MaxPool)\n    * `ceil_mode = 1` is not supported\n    * `dilations` must be array of 1.\n* [Mul](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Mul)\n* [Pad](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Pad)\n    * `mode` must be `\"constant\"`\n* [Pow](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Pow)\n    * 2nd input must be `2.0`\n* [PRelu](https://github.com/onnx/onnx/blob/master/docs/Operators.md#PRelu)\n    * `slope` must be `\"constant\"` and a single value tensor\n* [ReduceMean](https://github.com/onnx/onnx/blob/master/docs/Operators.md#reducemean)\n* [ReduceSum](https://github.com/onnx/onnx/blob/master/docs/Operators.md#reducesum)\n* [Relu](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Relu)\n* [Reshape](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Reshape)\n* [Resize](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Resize)\n    * must be from opset version >= 11\n    * `mode` must be `\"linear\"` or `\"nearest\"`\n    * `nearest_mode` must be `\"floor\"`\n    * `coordinate_transformation_mode` must be either `\"pytorch_half_pixel\"` or `\"align_corners\"` for `\"linear\"` mode\n    * `coordinate_transformation_mode` must be either `\"asymmetric\"` for `\"nearest\"` mode\n* [Sigmoid](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Sigmoid)\n* [Sin](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Sin)\n* [Slice](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Slice)\n    * must be from opset version >= 10\n    * `starts` must be [Constant](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Constant) value or have initializer value\n    * `ends` must be [Constant](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Constant) value or have initializer value\n    * `axes` must be [Constant](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Constant) value or have initializer value\n    * `steps` is not supported\n* [Softmax](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Softmax)\n* [Split](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Split)\n* [Sqrt](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Sqrt)\n* [Squeeze](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Squeeze)\n* [Sub](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Sub)\n* [Sum](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Sum)\n    * 2 inputs\n* [Tan](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Tan)\n* [Tanh](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Tanh)\n* [Transpose](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Transpose)\n* [Unsqueeze](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Unsqueeze)\n* [Where](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Where)\n  * `condition` must be [Constant](https://github.com/onnx/onnx/blob/master/docs/Operators.md#Constant) value\n  * `condition` must all true or all false\n  * the input value not selected must be constant\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "ONNX to NNOIR Converter",
    "version": "1.5.0",
    "project_urls": {
        "Homepage": "https://github.com/Idein/nnoir/tree/master/nnoir-onnx",
        "Repository": "https://github.com/Idein/nnoir/tree/master/nnoir-onnx"
    },
    "split_keywords": [
        "nnoir",
        " onnx",
        " machine learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "387f8e19b720f86cd7031475a0ab42f2c5af526afb634504522d6773b978a509",
                "md5": "6e24ed738f71cb428429d36a5f533427",
                "sha256": "849d3d8a43f6c2dd80ec5f01fa86175324ae6e9dd121afb8c255996d72c5af42"
            },
            "downloads": -1,
            "filename": "nnoir_onnx-1.5.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6e24ed738f71cb428429d36a5f533427",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 43203,
            "upload_time": "2024-11-27T02:37:02",
            "upload_time_iso_8601": "2024-11-27T02:37:02.364390Z",
            "url": "https://files.pythonhosted.org/packages/38/7f/8e19b720f86cd7031475a0ab42f2c5af526afb634504522d6773b978a509/nnoir_onnx-1.5.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ac8731809ef86a073a8ec1d21a195f4e9fbec6f8ba3b0ddf6f1671be5ddc9f45",
                "md5": "7f1ba7b65b8d476c433af1fa74469f63",
                "sha256": "a78c7ebdc47aa629cbcd169a38890bdfc2898e849164c95e95c92ccc6b72324c"
            },
            "downloads": -1,
            "filename": "nnoir_onnx-1.5.0.tar.gz",
            "has_sig": false,
            "md5_digest": "7f1ba7b65b8d476c433af1fa74469f63",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 21760,
            "upload_time": "2024-11-27T02:37:03",
            "upload_time_iso_8601": "2024-11-27T02:37:03.980126Z",
            "url": "https://files.pythonhosted.org/packages/ac/87/31809ef86a073a8ec1d21a195f4e9fbec6f8ba3b0ddf6f1671be5ddc9f45/nnoir_onnx-1.5.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-27 02:37:03",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Idein",
    "github_project": "nnoir",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "circle": true,
    "lcname": "nnoir-onnx"
}
        
Elapsed time: 1.82943s