nnspt


Namennspt JSON
Version 0.0.1 PyPI version JSON
download
home_pagehttps://github.com/rostepifanov/nnspt
Summary
upload_time2024-01-09 17:29:15
maintainer
docs_urlNone
authorRostislav Epifanov
requires_python>=3.7
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Neural Network Signal Processing on Torch

![Python version support](https://img.shields.io/pypi/pyversions/nnspt)
[![PyPI version](https://badge.fury.io/py/nnspt.svg)](https://badge.fury.io/py/nnspt)
[![Downloads](https://pepy.tech/badge/nnspt/month)](https://pepy.tech/project/nnspt?versions=0.0.*)

NNSPT is a Python library for neural network signal processing on PyTorch.

## Table of contents
- [Authors](#authors)
- [Installation](#installation)
- [A simple example](#a-simple-example)
- [Available components](#available-components)
- [Citing](#citing)

## Authors
[**Rostislav Epifanov** — Researcher in Novosibirsk]()

## Installation
Installation from PyPI:

```
pip install nnspt
```

Installation from GitHub:

```
pip install git+https://github.com/rostepifanov/nnspt
```

## A simple example
```python
from nnspt.segmentation.unet import Unet

model = Unet(encoder='tv-resnet34')
```

## Available components
#### Encoders

  * <details> <summary>ResNet</summary>

      - tv-resnet18
      - tv-resnet34
      - tv-resnet50
      - tv-resnet101
      - tv-resnet152
  </details>

  * <details> <summary>ResNeXt</summary>

      - tv-resnext50_32x4d
      - tv-resnext101_32x4d
      - tv-resnext101_32x8d
      - tv-resnext101_32x16d
      - tv-resnext101_32x32d
      - tv-resnext101_32x48d
  </details>

  * <details> <summary>DenseNet</summary>

      - tv-densenet121
      - tv-densenet169
      - tv-densenet201
      - tv-densenet161

  </details>

  * <details> <summary>EfficientNetV1</summary>

      - timm-efficientnet-b0
      - timm-efficientnet-b1
      - timm-efficientnet-b2
      - timm-efficientnet-b3
      - timm-efficientnet-b4
      - timm-efficientnet-b5
      - timm-efficientnet-b6
      - timm-efficientnet-b7

  </details>

  * <details> <summary>EfficientNetLite</summary>

      - timm-efficientnet-lite0
      - timm-efficientnet-lite1
      - timm-efficientnet-lite2
      - timm-efficientnet-lite3
      - timm-efficientnet-lite4

  </details>

#### Pretraining

  * Autoencoder

#### Segmentation

  * Unet [[paper](https://arxiv.org/abs/1505.04597)]

## Citing

If you find this library useful for your research, please consider citing:

```
@misc{epifanov2023ecgmentations,
  Author = {Rostislav Epifanov},
  Title = {NNSTP},
  Year = {2023},
  Publisher = {GitHub},
  Journal = {GitHub repository},
  Howpublished = {\url{https://github.com/rostepifanov/nnspt}}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/rostepifanov/nnspt",
    "name": "nnspt",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "",
    "author": "Rostislav Epifanov",
    "author_email": "rostepifanov@gmail.com",
    "download_url": "",
    "platform": null,
    "description": "# Neural Network Signal Processing on Torch\n\n![Python version support](https://img.shields.io/pypi/pyversions/nnspt)\n[![PyPI version](https://badge.fury.io/py/nnspt.svg)](https://badge.fury.io/py/nnspt)\n[![Downloads](https://pepy.tech/badge/nnspt/month)](https://pepy.tech/project/nnspt?versions=0.0.*)\n\nNNSPT is a Python library for neural network signal processing on PyTorch.\n\n## Table of contents\n- [Authors](#authors)\n- [Installation](#installation)\n- [A simple example](#a-simple-example)\n- [Available components](#available-components)\n- [Citing](#citing)\n\n## Authors\n[**Rostislav Epifanov** \u2014 Researcher in Novosibirsk]()\n\n## Installation\nInstallation from PyPI:\n\n```\npip install nnspt\n```\n\nInstallation from GitHub:\n\n```\npip install git+https://github.com/rostepifanov/nnspt\n```\n\n## A simple example\n```python\nfrom nnspt.segmentation.unet import Unet\n\nmodel = Unet(encoder='tv-resnet34')\n```\n\n## Available components\n#### Encoders\n\n  * <details> <summary>ResNet</summary>\n\n      - tv-resnet18\n      - tv-resnet34\n      - tv-resnet50\n      - tv-resnet101\n      - tv-resnet152\n  </details>\n\n  * <details> <summary>ResNeXt</summary>\n\n      - tv-resnext50_32x4d\n      - tv-resnext101_32x4d\n      - tv-resnext101_32x8d\n      - tv-resnext101_32x16d\n      - tv-resnext101_32x32d\n      - tv-resnext101_32x48d\n  </details>\n\n  * <details> <summary>DenseNet</summary>\n\n      - tv-densenet121\n      - tv-densenet169\n      - tv-densenet201\n      - tv-densenet161\n\n  </details>\n\n  * <details> <summary>EfficientNetV1</summary>\n\n      - timm-efficientnet-b0\n      - timm-efficientnet-b1\n      - timm-efficientnet-b2\n      - timm-efficientnet-b3\n      - timm-efficientnet-b4\n      - timm-efficientnet-b5\n      - timm-efficientnet-b6\n      - timm-efficientnet-b7\n\n  </details>\n\n  * <details> <summary>EfficientNetLite</summary>\n\n      - timm-efficientnet-lite0\n      - timm-efficientnet-lite1\n      - timm-efficientnet-lite2\n      - timm-efficientnet-lite3\n      - timm-efficientnet-lite4\n\n  </details>\n\n#### Pretraining\n\n  * Autoencoder\n\n#### Segmentation\n\n  * Unet [[paper](https://arxiv.org/abs/1505.04597)]\n\n## Citing\n\nIf you find this library useful for your research, please consider citing:\n\n```\n@misc{epifanov2023ecgmentations,\n  Author = {Rostislav Epifanov},\n  Title = {NNSTP},\n  Year = {2023},\n  Publisher = {GitHub},\n  Journal = {GitHub repository},\n  Howpublished = {\\url{https://github.com/rostepifanov/nnspt}}\n}\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "",
    "version": "0.0.1",
    "project_urls": {
        "Homepage": "https://github.com/rostepifanov/nnspt"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cafd5b91618e1ea1ee902d517240134c916c06c55fa018d2917746678e8fbffb",
                "md5": "eb8c0265db71bb64bed295419babbb5c",
                "sha256": "71dc45c1d1093e52838653a022aaf260a1b9d240ae7e33bd2421683d5571346f"
            },
            "downloads": -1,
            "filename": "nnspt-0.0.1-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "eb8c0265db71bb64bed295419babbb5c",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.7",
            "size": 22892,
            "upload_time": "2024-01-09T17:29:15",
            "upload_time_iso_8601": "2024-01-09T17:29:15.802201Z",
            "url": "https://files.pythonhosted.org/packages/ca/fd/5b91618e1ea1ee902d517240134c916c06c55fa018d2917746678e8fbffb/nnspt-0.0.1-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-09 17:29:15",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "rostepifanov",
    "github_project": "nnspt",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "nnspt"
}
        
Elapsed time: 0.45149s