noaa-coops


Namenoaa-coops JSON
Version 0.4.0 PyPI version JSON
download
home_pageNone
SummaryPython wrapper for NOAA Tides & Currents Data and Metadata.
upload_time2024-08-03 14:39:49
maintainerNone
docs_urlNone
authorGregory Clunies
requires_python<4.0,>=3.9
licenseApache-2.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # noaa_coops

[![PyPI](https://img.shields.io/pypi/v/noaa_coops.svg)](https://pypi.python.org/pypi/noaa-coops)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/noaa_coops.svg)](https://pypi.python.org/pypi/noaa-coops)

A Python wrapper for the NOAA CO-OPS Tides &amp; Currents [Data](https://tidesandcurrents.noaa.gov/api/)
and [Metadata](https://tidesandcurrents.noaa.gov/mdapi/latest/) APIs.

## Installation
This package is distributed via [PyPi](https://pypi.org/project/noaa-coops/) and can be installed using , `pip`, `poetry`, etc.
```bash
# Install with pip
❯ pip install noaa_coops

# Install with poetry
❯ poetry add noaa_coops
```

## Getting Started

### Stations
Data is accessed via `Station` class objects. Each station is uniquely identified by an `id`. To initialize a `Station` object, run:

```python
>>> from noaa_coops import Station
>>> seattle = Station(id="9447130")  # Create Station object for Seattle (ID = 9447130)
```

Stations and their IDs can be found using the Tides & Currents [mapping interface](https://tidesandcurrents.noaa.gov/). Alternatively, you can search for stations in a bounding box using the `get_stations_from_bbox` function, which will return a list of stations found in the box (if any).
```python
>>> from pprint import pprint
>>> from noaa_coops import Station, get_stations_from_bbox
>>> stations = get_stations_from_bbox(lat_coords=[40.389, 40.9397], lon_coords=[-74.4751, -73.7432])
>>> pprint(stations)
['8516945', '8518750', '8519483', '8531680']
>>> station_one = Station(id="8516945")
>>> pprint(station_one.name)
'Kings Point'
```

### Metadata
Station metadata is stored in the `.metadata` attribute of a `Station` object. Additionally, the keys of the metadata attribute dictionary are also assigned as attributes of the station object itself.

```python
>>> from pprint import pprint
>>> from noaa_coops import Station
>>> seattle = Station(id="9447130")
>>> pprint(list(seattle.metadata.items())[:5])                   # Print first 3 items in metadata
[('tidal', True), ('greatlakes', False), ('shefcode', 'EBSW1')]  # Metadata dictionary can be very long
>>> pprint(seattle.lat_lon['lat'])                               # Print latitude
47.601944
>>> pprint(seattle.lat_lon['lon'])                               # Print longitude
-122.339167
```

### Data Inventory
A description of a Station's data products and available dates can be accessed via the `.data_inventory` attribute of a `Station` object.

```python
>>> from noaa_coops import Station
>>> from pprint import pprint
>>> seattle = Station(id="9447130")
>>> pprint(seattle.data_inventory)
{'Air Temperature': {'end_date': '2019-01-02 18:36',
                     'start_date': '1991-11-09 01:00'},
 'Barometric Pressure': {'end_date': '2019-01-02 18:36',
                         'start_date': '1991-11-09 00:00'},
 'Preliminary 6-Minute Water Level': {'end_date': '2023-02-05 19:54',
                                      'start_date': '2001-01-01 00:00'},
 'Verified 6-Minute Water Level': {'end_date': '2022-12-31 23:54',
                                   'start_date': '1995-06-01 00:00'},
 'Verified High/Low Water Level': {'end_date': '2022-12-31 23:54',
                                   'start_date': '1977-10-18 02:18'},
 'Verified Hourly Height Water Level': {'end_date': '2022-12-31 23:00',
                                        'start_date': '1899-01-01 00:00'},
 'Verified Monthly Mean Water Level': {'end_date': '2022-12-31 23:54',
                                       'start_date': '1898-12-01 00:00'},
 'Water Temperature': {'end_date': '2019-01-02 18:36',
                       'start_date': '1991-11-09 00:00'},
 'Wind': {'end_date': '2019-01-02 18:36', 'start_date': '1991-11-09 00:00'}}
```

### Data Retrieval
Available data products can be found in NOAA CO-OPS Data API docs.

Station data can be fetched using the `.get_data` method on a `Station` object. Data is returned as a Pandas [DataFrame](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html) for ease of use and analysis. DataFrame columns are named according to the NOAA CO-OPS API [docs](https://api.tidesandcurrents.noaa.gov/api/prod/responseHelp.html), with the `t` column (timestamp) set as the DataFrame index.

The example below fetches water level data from the Seattle station (id=9447130) for a 1 month period. The corresponding [web output](https://tidesandcurrents.noaa.gov/waterlevels.html?id=9447130&units=metric&bdate=20150101&edate=20150131&timezone=GMT&datum=MLLW) is shown below the code as a reference.

```python
>>> from noaa_coops import Station
>>> seattle = Station(id="9447130")
>>> df_water_levels = seattle.get_data(
...     begin_date="20150101",
...     end_date="20150131",
...     product="water_level",
...     datum="MLLW",
...     units="metric",
...     time_zone="gmt")
>>> df_water_levels.head()
                         v      s        f  q
t
2015-01-01 00:00:00  1.799  0.023  0,0,0,0  v
2015-01-01 00:06:00  1.718  0.018  0,0,0,0  v
2015-01-01 00:12:00  1.639  0.013  0,0,0,0  v
2015-01-01 00:18:00  1.557  0.012  0,0,0,0  v
2015-01-01 00:24:00  1.473  0.014  0,0,0,0  v

```

![image](https://user-images.githubusercontent.com/28986302/233147224-765fbe05-372c-40f3-8bbe-4102536e7ff3.png)


## Development

### Requirements
This package and its dependencies are managed using [poetry](https://python-poetry.org/). To install the development environment for `noaa_coops`, first install poetry, then run (inside the repo):

```bash
poetry install
```

### TODO
Click [here](https://github.com/GClunies/noaa_coops/issues) for a list of existing issues and to submit a new one.

### Contribution
Contributions are welcome, feel free to submit a pull request.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "noaa-coops",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": "Gregory Clunies",
    "author_email": "greg.clunies@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/1b/d1/a0617ae0bd29a3096e8de4134806d755ec83b5e737e85fec8f027acc2eb6/noaa_coops-0.4.0.tar.gz",
    "platform": null,
    "description": "# noaa_coops\n\n[![PyPI](https://img.shields.io/pypi/v/noaa_coops.svg)](https://pypi.python.org/pypi/noaa-coops)\n[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/noaa_coops.svg)](https://pypi.python.org/pypi/noaa-coops)\n\nA Python wrapper for the NOAA CO-OPS Tides &amp; Currents [Data](https://tidesandcurrents.noaa.gov/api/)\nand [Metadata](https://tidesandcurrents.noaa.gov/mdapi/latest/) APIs.\n\n## Installation\nThis package is distributed via [PyPi](https://pypi.org/project/noaa-coops/) and can be installed using , `pip`, `poetry`, etc.\n```bash\n# Install with pip\n\u276f pip install noaa_coops\n\n# Install with poetry\n\u276f poetry add noaa_coops\n```\n\n## Getting Started\n\n### Stations\nData is accessed via `Station` class objects. Each station is uniquely identified by an `id`. To initialize a `Station` object, run:\n\n```python\n>>> from noaa_coops import Station\n>>> seattle = Station(id=\"9447130\")  # Create Station object for Seattle (ID = 9447130)\n```\n\nStations and their IDs can be found using the Tides & Currents [mapping interface](https://tidesandcurrents.noaa.gov/). Alternatively, you can search for stations in a bounding box using the `get_stations_from_bbox` function, which will return a list of stations found in the box (if any).\n```python\n>>> from pprint import pprint\n>>> from noaa_coops import Station, get_stations_from_bbox\n>>> stations = get_stations_from_bbox(lat_coords=[40.389, 40.9397], lon_coords=[-74.4751, -73.7432])\n>>> pprint(stations)\n['8516945', '8518750', '8519483', '8531680']\n>>> station_one = Station(id=\"8516945\")\n>>> pprint(station_one.name)\n'Kings Point'\n```\n\n### Metadata\nStation metadata is stored in the `.metadata` attribute of a `Station` object. Additionally, the keys of the metadata attribute dictionary are also assigned as attributes of the station object itself.\n\n```python\n>>> from pprint import pprint\n>>> from noaa_coops import Station\n>>> seattle = Station(id=\"9447130\")\n>>> pprint(list(seattle.metadata.items())[:5])                   # Print first 3 items in metadata\n[('tidal', True), ('greatlakes', False), ('shefcode', 'EBSW1')]  # Metadata dictionary can be very long\n>>> pprint(seattle.lat_lon['lat'])                               # Print latitude\n47.601944\n>>> pprint(seattle.lat_lon['lon'])                               # Print longitude\n-122.339167\n```\n\n### Data Inventory\nA description of a Station's data products and available dates can be accessed via the `.data_inventory` attribute of a `Station` object.\n\n```python\n>>> from noaa_coops import Station\n>>> from pprint import pprint\n>>> seattle = Station(id=\"9447130\")\n>>> pprint(seattle.data_inventory)\n{'Air Temperature': {'end_date': '2019-01-02 18:36',\n                     'start_date': '1991-11-09 01:00'},\n 'Barometric Pressure': {'end_date': '2019-01-02 18:36',\n                         'start_date': '1991-11-09 00:00'},\n 'Preliminary 6-Minute Water Level': {'end_date': '2023-02-05 19:54',\n                                      'start_date': '2001-01-01 00:00'},\n 'Verified 6-Minute Water Level': {'end_date': '2022-12-31 23:54',\n                                   'start_date': '1995-06-01 00:00'},\n 'Verified High/Low Water Level': {'end_date': '2022-12-31 23:54',\n                                   'start_date': '1977-10-18 02:18'},\n 'Verified Hourly Height Water Level': {'end_date': '2022-12-31 23:00',\n                                        'start_date': '1899-01-01 00:00'},\n 'Verified Monthly Mean Water Level': {'end_date': '2022-12-31 23:54',\n                                       'start_date': '1898-12-01 00:00'},\n 'Water Temperature': {'end_date': '2019-01-02 18:36',\n                       'start_date': '1991-11-09 00:00'},\n 'Wind': {'end_date': '2019-01-02 18:36', 'start_date': '1991-11-09 00:00'}}\n```\n\n### Data Retrieval\nAvailable data products can be found in NOAA CO-OPS Data API docs.\n\nStation data can be fetched using the `.get_data` method on a `Station` object. Data is returned as a Pandas [DataFrame](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html) for ease of use and analysis. DataFrame columns are named according to the NOAA CO-OPS API [docs](https://api.tidesandcurrents.noaa.gov/api/prod/responseHelp.html), with the `t` column (timestamp) set as the DataFrame index.\n\nThe example below fetches water level data from the Seattle station (id=9447130) for a 1 month period. The corresponding [web output](https://tidesandcurrents.noaa.gov/waterlevels.html?id=9447130&units=metric&bdate=20150101&edate=20150131&timezone=GMT&datum=MLLW) is shown below the code as a reference.\n\n```python\n>>> from noaa_coops import Station\n>>> seattle = Station(id=\"9447130\")\n>>> df_water_levels = seattle.get_data(\n...     begin_date=\"20150101\",\n...     end_date=\"20150131\",\n...     product=\"water_level\",\n...     datum=\"MLLW\",\n...     units=\"metric\",\n...     time_zone=\"gmt\")\n>>> df_water_levels.head()\n                         v      s        f  q\nt\n2015-01-01 00:00:00  1.799  0.023  0,0,0,0  v\n2015-01-01 00:06:00  1.718  0.018  0,0,0,0  v\n2015-01-01 00:12:00  1.639  0.013  0,0,0,0  v\n2015-01-01 00:18:00  1.557  0.012  0,0,0,0  v\n2015-01-01 00:24:00  1.473  0.014  0,0,0,0  v\n\n```\n\n![image](https://user-images.githubusercontent.com/28986302/233147224-765fbe05-372c-40f3-8bbe-4102536e7ff3.png)\n\n\n## Development\n\n### Requirements\nThis package and its dependencies are managed using [poetry](https://python-poetry.org/). To install the development environment for `noaa_coops`, first install poetry, then run (inside the repo):\n\n```bash\npoetry install\n```\n\n### TODO\nClick [here](https://github.com/GClunies/noaa_coops/issues) for a list of existing issues and to submit a new one.\n\n### Contribution\nContributions are welcome, feel free to submit a pull request.\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Python wrapper for NOAA Tides & Currents Data and Metadata.",
    "version": "0.4.0",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "671c21121519247ff05b987dc5293d33302aa8fcdf68ab41626162f03becbd81",
                "md5": "e788eec0bd533c1afad5b6caf472ae71",
                "sha256": "d05f00de2f889f3e01a1b4454f57f44268dea35b322ba9cbdc532effe21e8522"
            },
            "downloads": -1,
            "filename": "noaa_coops-0.4.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e788eec0bd533c1afad5b6caf472ae71",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 13539,
            "upload_time": "2024-08-03T14:39:48",
            "upload_time_iso_8601": "2024-08-03T14:39:48.066634Z",
            "url": "https://files.pythonhosted.org/packages/67/1c/21121519247ff05b987dc5293d33302aa8fcdf68ab41626162f03becbd81/noaa_coops-0.4.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1bd1a0617ae0bd29a3096e8de4134806d755ec83b5e737e85fec8f027acc2eb6",
                "md5": "a05788c19c00169372d021d4470047ab",
                "sha256": "9b7853cd4b2961332e930723dee05b45a8539976cbd5a2550fd3577e3c20841f"
            },
            "downloads": -1,
            "filename": "noaa_coops-0.4.0.tar.gz",
            "has_sig": false,
            "md5_digest": "a05788c19c00169372d021d4470047ab",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 14730,
            "upload_time": "2024-08-03T14:39:49",
            "upload_time_iso_8601": "2024-08-03T14:39:49.093411Z",
            "url": "https://files.pythonhosted.org/packages/1b/d1/a0617ae0bd29a3096e8de4134806d755ec83b5e737e85fec8f027acc2eb6/noaa_coops-0.4.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-03 14:39:49",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "noaa-coops"
}
        
Elapsed time: 4.29625s