normet
======
.. image:: ../statics/logo.svg
:align: right
:height: 131.5
**normet** is a Python package to conduct automated data curation, automated machine learning-based meteorology/weather normalisation and causal analysis on air quality interventions for atmospheric science, air pollution and policy analysis. The main aim of this package is to provide a Swiss army knife enabling rapid automated-air quality intervention studies, and contributing to cross-disciplinary studies with public health, economics, policy, etc.
Installation
============
.. code-block:: bash
conda create -n normet jupyter
conda activate normet
This package depends on AutoML from flaml. Install FLAML first:
.. code-block:: bash
conda install flaml -c conda-forge
Install normet using pip:
.. code-block:: bash
pip install normet
Or install normet from source:
.. code-block:: bash
git clone https://github.com/dsncas/normet.git
cd normet/python
python setup.py install
Main Features
=============
Here are a few of the functions that normet implemented:
- Automated machine learning. Help to select the 'best' ML model for the dataset and model training.
- Partial dependency. Look at the drivers of changes in air pollutant concentrations and feature importance.
- Weather normalisation. Decoupling emission-related air pollutant concentrations from meteorological effects.
- Causal inference for air quality interventions. Attribution of changes in air pollutant concentrations to air quality policy interventions.
Documentation
=============
You can find Demo and tutorials of the functions `here <https://normet.readthedocs.io>`_.
Raw data
{
"_id": null,
"home_page": null,
"name": "normet",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "Atmospheric Science, Air Quality, Machine Learning, Causal Analysis",
"author": "Dr. Congbo Song and other MEDAL group members",
"author_email": "congbo.song@ncas.ac.uk",
"download_url": "https://files.pythonhosted.org/packages/6e/a9/a1c14a47a01ee31f1c28d8109150e7218c1b06cbf46083aee129dfd645da/normet-0.1.15.tar.gz",
"platform": null,
"description": "normet\n======\n\n.. image:: ../statics/logo.svg\n :align: right\n :height: 131.5\n\n**normet** is a Python package to conduct automated data curation, automated machine learning-based meteorology/weather normalisation and causal analysis on air quality interventions for atmospheric science, air pollution and policy analysis. The main aim of this package is to provide a Swiss army knife enabling rapid automated-air quality intervention studies, and contributing to cross-disciplinary studies with public health, economics, policy, etc.\n\nInstallation\n============\n\n.. code-block:: bash\n\n conda create -n normet jupyter\n conda activate normet\n\nThis package depends on AutoML from flaml. Install FLAML first:\n\n.. code-block:: bash\n\n conda install flaml -c conda-forge\n\nInstall normet using pip:\n\n.. code-block:: bash\n\n pip install normet\n\nOr install normet from source:\n\n.. code-block:: bash\n\n git clone https://github.com/dsncas/normet.git\n cd normet/python\n python setup.py install\n\nMain Features\n=============\n\nHere are a few of the functions that normet implemented:\n\n - Automated machine learning. Help to select the 'best' ML model for the dataset and model training.\n - Partial dependency. Look at the drivers of changes in air pollutant concentrations and feature importance.\n - Weather normalisation. Decoupling emission-related air pollutant concentrations from meteorological effects.\n - Causal inference for air quality interventions. Attribution of changes in air pollutant concentrations to air quality policy interventions.\n\nDocumentation\n=============\n\nYou can find Demo and tutorials of the functions `here <https://normet.readthedocs.io>`_.\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "normet: NORmalising METeorology on air quality",
"version": "0.1.15",
"project_urls": {
"homepage": "https://github.com/m-edal/normet"
},
"split_keywords": [
"atmospheric science",
" air quality",
" machine learning",
" causal analysis"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d27bd960a560ee83ca29428347ddea1e7058658c6f1b08c1a0432c63bf6eef19",
"md5": "ca7fe993566ab80f6236cac93d3de544",
"sha256": "8a40292b85db0d8f3de7a1f84e589d00fac0ee3395c9df2021ae28a849c40eeb"
},
"downloads": -1,
"filename": "normet-0.1.15-py3-none-any.whl",
"has_sig": false,
"md5_digest": "ca7fe993566ab80f6236cac93d3de544",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 19557,
"upload_time": "2024-09-23T10:30:43",
"upload_time_iso_8601": "2024-09-23T10:30:43.090095Z",
"url": "https://files.pythonhosted.org/packages/d2/7b/d960a560ee83ca29428347ddea1e7058658c6f1b08c1a0432c63bf6eef19/normet-0.1.15-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "6ea9a1c14a47a01ee31f1c28d8109150e7218c1b06cbf46083aee129dfd645da",
"md5": "e9e1bdf632f0ddb4af7160253b4f5cf7",
"sha256": "1777715114379115f46caafa5b90ab2a27e48cc3e80a315e2dab6dd0dd02d8bf"
},
"downloads": -1,
"filename": "normet-0.1.15.tar.gz",
"has_sig": false,
"md5_digest": "e9e1bdf632f0ddb4af7160253b4f5cf7",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 20414,
"upload_time": "2024-09-23T10:30:45",
"upload_time_iso_8601": "2024-09-23T10:30:45.119732Z",
"url": "https://files.pythonhosted.org/packages/6e/a9/a1c14a47a01ee31f1c28d8109150e7218c1b06cbf46083aee129dfd645da/normet-0.1.15.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-23 10:30:45",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "m-edal",
"github_project": "normet",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "normet"
}