normet


Namenormet JSON
Version 0.1.15 PyPI version JSON
download
home_pageNone
Summarynormet: NORmalising METeorology on air quality
upload_time2024-09-23 10:30:45
maintainerNone
docs_urlNone
authorDr. Congbo Song and other MEDAL group members
requires_python>=3.9
licenseMIT
keywords atmospheric science air quality machine learning causal analysis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            normet
======

.. image:: ../statics/logo.svg
   :align: right
   :height: 131.5

**normet** is a Python package to conduct automated data curation, automated machine learning-based meteorology/weather normalisation and causal analysis on air quality interventions for atmospheric science, air pollution and policy analysis. The main aim of this package is to provide a Swiss army knife enabling rapid automated-air quality intervention studies, and contributing to cross-disciplinary studies with public health, economics, policy, etc.

Installation
============

.. code-block:: bash

   conda create -n normet jupyter
   conda activate normet

This package depends on AutoML from flaml. Install FLAML first:

.. code-block:: bash

   conda install flaml -c conda-forge

Install normet using pip:

.. code-block:: bash

   pip install normet

Or install normet from source:

.. code-block:: bash

   git clone https://github.com/dsncas/normet.git
   cd normet/python
   python setup.py install

Main Features
=============

Here are a few of the functions that normet implemented:

  - Automated machine learning. Help to select the 'best' ML model for the dataset and model training.
  - Partial dependency. Look at the drivers of changes in air pollutant concentrations and feature importance.
  - Weather normalisation. Decoupling emission-related air pollutant concentrations from meteorological effects.
  - Causal inference for air quality interventions. Attribution of changes in air pollutant concentrations to air quality policy interventions.

Documentation
=============

You can find Demo and tutorials of the functions `here <https://normet.readthedocs.io>`_.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "normet",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "Atmospheric Science, Air Quality, Machine Learning, Causal Analysis",
    "author": "Dr. Congbo Song and other MEDAL group members",
    "author_email": "congbo.song@ncas.ac.uk",
    "download_url": "https://files.pythonhosted.org/packages/6e/a9/a1c14a47a01ee31f1c28d8109150e7218c1b06cbf46083aee129dfd645da/normet-0.1.15.tar.gz",
    "platform": null,
    "description": "normet\n======\n\n.. image:: ../statics/logo.svg\n   :align: right\n   :height: 131.5\n\n**normet** is a Python package to conduct automated data curation, automated machine learning-based meteorology/weather normalisation and causal analysis on air quality interventions for atmospheric science, air pollution and policy analysis. The main aim of this package is to provide a Swiss army knife enabling rapid automated-air quality intervention studies, and contributing to cross-disciplinary studies with public health, economics, policy, etc.\n\nInstallation\n============\n\n.. code-block:: bash\n\n   conda create -n normet jupyter\n   conda activate normet\n\nThis package depends on AutoML from flaml. Install FLAML first:\n\n.. code-block:: bash\n\n   conda install flaml -c conda-forge\n\nInstall normet using pip:\n\n.. code-block:: bash\n\n   pip install normet\n\nOr install normet from source:\n\n.. code-block:: bash\n\n   git clone https://github.com/dsncas/normet.git\n   cd normet/python\n   python setup.py install\n\nMain Features\n=============\n\nHere are a few of the functions that normet implemented:\n\n  - Automated machine learning. Help to select the 'best' ML model for the dataset and model training.\n  - Partial dependency. Look at the drivers of changes in air pollutant concentrations and feature importance.\n  - Weather normalisation. Decoupling emission-related air pollutant concentrations from meteorological effects.\n  - Causal inference for air quality interventions. Attribution of changes in air pollutant concentrations to air quality policy interventions.\n\nDocumentation\n=============\n\nYou can find Demo and tutorials of the functions `here <https://normet.readthedocs.io>`_.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "normet: NORmalising METeorology on air quality",
    "version": "0.1.15",
    "project_urls": {
        "homepage": "https://github.com/m-edal/normet"
    },
    "split_keywords": [
        "atmospheric science",
        " air quality",
        " machine learning",
        " causal analysis"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d27bd960a560ee83ca29428347ddea1e7058658c6f1b08c1a0432c63bf6eef19",
                "md5": "ca7fe993566ab80f6236cac93d3de544",
                "sha256": "8a40292b85db0d8f3de7a1f84e589d00fac0ee3395c9df2021ae28a849c40eeb"
            },
            "downloads": -1,
            "filename": "normet-0.1.15-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ca7fe993566ab80f6236cac93d3de544",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 19557,
            "upload_time": "2024-09-23T10:30:43",
            "upload_time_iso_8601": "2024-09-23T10:30:43.090095Z",
            "url": "https://files.pythonhosted.org/packages/d2/7b/d960a560ee83ca29428347ddea1e7058658c6f1b08c1a0432c63bf6eef19/normet-0.1.15-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6ea9a1c14a47a01ee31f1c28d8109150e7218c1b06cbf46083aee129dfd645da",
                "md5": "e9e1bdf632f0ddb4af7160253b4f5cf7",
                "sha256": "1777715114379115f46caafa5b90ab2a27e48cc3e80a315e2dab6dd0dd02d8bf"
            },
            "downloads": -1,
            "filename": "normet-0.1.15.tar.gz",
            "has_sig": false,
            "md5_digest": "e9e1bdf632f0ddb4af7160253b4f5cf7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 20414,
            "upload_time": "2024-09-23T10:30:45",
            "upload_time_iso_8601": "2024-09-23T10:30:45.119732Z",
            "url": "https://files.pythonhosted.org/packages/6e/a9/a1c14a47a01ee31f1c28d8109150e7218c1b06cbf46083aee129dfd645da/normet-0.1.15.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-23 10:30:45",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "m-edal",
    "github_project": "normet",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "normet"
}
        
Elapsed time: 3.76569s