normscaler


Namenormscaler JSON
Version 0.0.2 PyPI version JSON
download
home_pagehttps://github.com/shoukewei/normscaler
SummaryA data normalization package
upload_time2022-12-16 06:04:44
maintainer
docs_urlNone
authorShouke Wei
requires_python
licenseMIT License
keywords python data normalization dataframe one-hot encoded variables train test
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ## normscalers

A package for data normalization including the methods of *MinMaxScaler*, *MaxAbsScaler*, *RobustScaler*, *StandardScaler* and *Normalizer* in Scikit-learning, and *DecimalScaler*. The package can automatically detect the one-hot encoded variables and skip them to be normalized.

## Install 
```python
pip install normscaler
```
## use

### (1) import one or more scalers by their names

- MinMaxScaler
- MaxAbsScaler
- RobustScaler
- StandardScaler
- Normalizer
- DecimalScaler

For example, import DecimalScaler by
```python
from normascaler.scaler import DecimalScaler
```
### (2) Use Decimal scaling method
```python
X_train_scaled, X_train_scaled = DecimalScaler(X_train, X-test)
```
### (3) Display the normalized X_train data in Pandas DataFrame
```python
X_train_scaled
```
### (4) Display the normalized X_test data in Pandas DataFrame
```python
X_test_scaled
```
 ## Documentation
 Examples of a Jupyter note in GitHub: https://github.com/shoukewei/normscaler/blob/main/docs/examples.ipynb

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/shoukewei/normscaler",
    "name": "normscaler",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "python,data normalization,dataframe,one-hot encoded variables,train,test",
    "author": "Shouke Wei",
    "author_email": "shouke.wei@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/f5/bd/80b5698ee76c81f18fbbef3bab9feba89869536b4afca799eda3032bdd3f/normscaler-0.0.2.tar.gz",
    "platform": null,
    "description": "## normscalers\n\nA package for data normalization including the methods of *MinMaxScaler*, *MaxAbsScaler*, *RobustScaler*, *StandardScaler* and *Normalizer* in Scikit-learning, and *DecimalScaler*. The package can automatically detect the one-hot encoded variables and skip them to be normalized.\n\n## Install \n```python\npip install normscaler\n```\n## use\n\n### (1) import one or more scalers by their names\n\n- MinMaxScaler\n- MaxAbsScaler\n- RobustScaler\n- StandardScaler\n- Normalizer\n- DecimalScaler\n\nFor example, import DecimalScaler by\n```python\nfrom normascaler.scaler import DecimalScaler\n```\n### (2) Use Decimal scaling method\n```python\nX_train_scaled, X_train_scaled = DecimalScaler(X_train, X-test)\n```\n### (3) Display the normalized X_train data in Pandas DataFrame\n```python\nX_train_scaled\n```\n### (4) Display the normalized X_test data in Pandas DataFrame\n```python\nX_test_scaled\n```\n ## Documentation\n Examples of a Jupyter note in GitHub: https://github.com/shoukewei/normscaler/blob/main/docs/examples.ipynb\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "A data normalization package",
    "version": "0.0.2",
    "split_keywords": [
        "python",
        "data normalization",
        "dataframe",
        "one-hot encoded variables",
        "train",
        "test"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "80a7cbe7509d22b7eacf78fad3bd806d",
                "sha256": "53b4a92fcec9568d50a04abbad1955e4627ef6a63ca2ebcadd28d9c9b68f247e"
            },
            "downloads": -1,
            "filename": "normscaler-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "80a7cbe7509d22b7eacf78fad3bd806d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 3637,
            "upload_time": "2022-12-16T06:04:41",
            "upload_time_iso_8601": "2022-12-16T06:04:41.885570Z",
            "url": "https://files.pythonhosted.org/packages/31/8b/334c6164f4d96a54b30fc4b93305f66e7f5765445895a880b4ce14eef4e6/normscaler-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "f1fc0d6696812c3ccca63f5e7918d41a",
                "sha256": "1b944460838c636da0f32b78af21364d9d420a5cdcd1b4fc8d16bc74cd07817a"
            },
            "downloads": -1,
            "filename": "normscaler-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "f1fc0d6696812c3ccca63f5e7918d41a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 3973,
            "upload_time": "2022-12-16T06:04:44",
            "upload_time_iso_8601": "2022-12-16T06:04:44.128544Z",
            "url": "https://files.pythonhosted.org/packages/f5/bd/80b5698ee76c81f18fbbef3bab9feba89869536b4afca799eda3032bdd3f/normscaler-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-12-16 06:04:44",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "shoukewei",
    "github_project": "normscaler",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "normscaler"
}
        
Elapsed time: 0.02627s