## normscalers
A package for data normalization including the methods of *MinMaxScaler*, *MaxAbsScaler*, *RobustScaler*, *StandardScaler* and *Normalizer* in Scikit-learning, and *DecimalScaler*. The package can automatically detect the one-hot encoded variables and skip them to be normalized.
## Install
```python
pip install normscaler
```
## use
### (1) import one or more scalers by their names
- MinMaxScaler
- MaxAbsScaler
- RobustScaler
- StandardScaler
- Normalizer
- DecimalScaler
For example, import DecimalScaler by
```python
from normascaler.scaler import DecimalScaler
```
### (2) Use Decimal scaling method
```python
X_train_scaled, X_train_scaled = DecimalScaler(X_train, X-test)
```
### (3) Display the normalized X_train data in Pandas DataFrame
```python
X_train_scaled
```
### (4) Display the normalized X_test data in Pandas DataFrame
```python
X_test_scaled
```
## Documentation
Examples of a Jupyter note in GitHub: https://github.com/shoukewei/normscaler/blob/main/docs/examples.ipynb
Raw data
{
"_id": null,
"home_page": "https://github.com/shoukewei/normscaler",
"name": "normscaler",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "python,data normalization,dataframe,one-hot encoded variables,train,test",
"author": "Shouke Wei",
"author_email": "shouke.wei@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/f5/bd/80b5698ee76c81f18fbbef3bab9feba89869536b4afca799eda3032bdd3f/normscaler-0.0.2.tar.gz",
"platform": null,
"description": "## normscalers\n\nA package for data normalization including the methods of *MinMaxScaler*, *MaxAbsScaler*, *RobustScaler*, *StandardScaler* and *Normalizer* in Scikit-learning, and *DecimalScaler*. The package can automatically detect the one-hot encoded variables and skip them to be normalized.\n\n## Install \n```python\npip install normscaler\n```\n## use\n\n### (1) import one or more scalers by their names\n\n- MinMaxScaler\n- MaxAbsScaler\n- RobustScaler\n- StandardScaler\n- Normalizer\n- DecimalScaler\n\nFor example, import DecimalScaler by\n```python\nfrom normascaler.scaler import DecimalScaler\n```\n### (2) Use Decimal scaling method\n```python\nX_train_scaled, X_train_scaled = DecimalScaler(X_train, X-test)\n```\n### (3) Display the normalized X_train data in Pandas DataFrame\n```python\nX_train_scaled\n```\n### (4) Display the normalized X_test data in Pandas DataFrame\n```python\nX_test_scaled\n```\n ## Documentation\n Examples of a Jupyter note in GitHub: https://github.com/shoukewei/normscaler/blob/main/docs/examples.ipynb\n",
"bugtrack_url": null,
"license": "MIT License",
"summary": "A data normalization package",
"version": "0.0.2",
"split_keywords": [
"python",
"data normalization",
"dataframe",
"one-hot encoded variables",
"train",
"test"
],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "80a7cbe7509d22b7eacf78fad3bd806d",
"sha256": "53b4a92fcec9568d50a04abbad1955e4627ef6a63ca2ebcadd28d9c9b68f247e"
},
"downloads": -1,
"filename": "normscaler-0.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "80a7cbe7509d22b7eacf78fad3bd806d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 3637,
"upload_time": "2022-12-16T06:04:41",
"upload_time_iso_8601": "2022-12-16T06:04:41.885570Z",
"url": "https://files.pythonhosted.org/packages/31/8b/334c6164f4d96a54b30fc4b93305f66e7f5765445895a880b4ce14eef4e6/normscaler-0.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "f1fc0d6696812c3ccca63f5e7918d41a",
"sha256": "1b944460838c636da0f32b78af21364d9d420a5cdcd1b4fc8d16bc74cd07817a"
},
"downloads": -1,
"filename": "normscaler-0.0.2.tar.gz",
"has_sig": false,
"md5_digest": "f1fc0d6696812c3ccca63f5e7918d41a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 3973,
"upload_time": "2022-12-16T06:04:44",
"upload_time_iso_8601": "2022-12-16T06:04:44.128544Z",
"url": "https://files.pythonhosted.org/packages/f5/bd/80b5698ee76c81f18fbbef3bab9feba89869536b4afca799eda3032bdd3f/normscaler-0.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2022-12-16 06:04:44",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "shoukewei",
"github_project": "normscaler",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "normscaler"
}