# Mapping values in NumPy arrays (any shape!) with high speed - Cython -
## pip install nparraymapper
### Tested against Python 3.11 / Windows 10
## Cython (and a C/C++ compiler) must be installed to use the optimized Cython implementation.
This module provides functions for mapping values in NumPy arrays based on a specified mapping dictionary. It works on any shape and with almost all dtypes (OBJECT NOT!!!)
It always returns a copy! The original data doesn't change!
```python
import numpy as np
from nparraymapper import map_numpy_array, map_array_with_strings
np.random.seed(0)
a = np.random.randint(1, 9, (10000, 10000, 4))
ds = map_numpy_array(a, mapdict={4: 400000, 3: 1021, 2: -1}, keepnotmapped=True)
print(a)
print(ds)
print('----------------------------')
a = np.random.randint(2, 9, (100, 100, 3), dtype=np.uint32)
ds = map_numpy_array(a, mapdict={4: 4000.1232, 3: 1021.32}, keepnotmapped=True)
print(a)
print(ds)
print('----------------------------')
a = np.random.randint(2, 9, (1000, 100, 8)).astype(np.float32)
ds = map_numpy_array(a, mapdict={4: 40, 3: 1021}, keepnotmapped=False)
print(a)
print(ds)
print('----------------------------')
subsdi = {110: 'babça', 14: 'bsdfvd', 9: 'çbba'}
src = np.random.randint(1, 12, (1000, 1000, 3))
print(src)
out = map_array_with_strings(src, mapdict=subsdi)
print(out)
# [[[5 8 6 1]
# [4 4 4 8]
# [2 4 6 3]
# ...
# [6 4 4 4]
# [2 5 8 2]
# [3 7 5 5]]
# [[6 1 4 1]
# [1 2 5 8]
# [1 7 6 5]
# ...
# [6 7 7 1]
# [5 5 4 7]
# [5 8 7 6]]
# [[1 2 8 5]
# [2 2 8 6]
# [1 3 4 4]
# ...
# [3 4 3 2]
# [4 6 8 5]
# [4 7 6 4]]
# ...
# [[2 7 5 5]
# [2 2 8 8]
# [8 8 7 8]
# ...
# [8 7 5 8]
# [4 6 5 8]
# [3 8 5 8]]
# [[6 4 1 5]
# [1 7 7 1]
# [2 4 5 3]
# ...
# [1 5 5 4]
# [1 8 6 7]
# [4 5 8 4]]
# [[4 2 3 5]
# [5 7 8 2]
# [1 3 4 6]
# ...
# [3 8 1 5]
# [7 8 4 3]
# [6 8 3 4]]]
# [[[ 5 8 6 1]
# [400000 400000 400000 8]
# [ -1 400000 6 1021]
# ...
# [ 6 400000 400000 400000]
# [ -1 5 8 -1]
# [ 1021 7 5 5]]
# [[ 6 1 400000 1]
# [ 1 -1 5 8]
# [ 1 7 6 5]
# ...
# [ 6 7 7 1]
# [ 5 5 400000 7]
# [ 5 8 7 6]]
# [[ 1 -1 8 5]
# [ -1 -1 8 6]
# [ 1 1021 400000 400000]
# ...
# [ 1021 400000 1021 -1]
# [400000 6 8 5]
# [400000 7 6 400000]]
# ...
# [[ -1 7 5 5]
# [ -1 -1 8 8]
# [ 8 8 7 8]
# ...
# [ 8 7 5 8]
# [400000 6 5 8]
# [ 1021 8 5 8]]
# [[ 6 400000 1 5]
# [ 1 7 7 1]
# [ -1 400000 5 1021]
# ...
# [ 1 5 5 400000]
# [ 1 8 6 7]
# [400000 5 8 400000]]
# [[400000 -1 1021 5]
# [ 5 7 8 -1]
# [ 1 1021 400000 6]
# ...
# [ 1021 8 1 5]
# [ 7 8 400000 1021]
# [ 6 8 1021 400000]]]
# ----------------------------
# [[[2 8 2]
# [3 4 3]
# [2 7 7]
# ...
# [4 6 4]
# [3 7 5]
# [7 7 8]]
# [[4 4 4]
# [2 7 4]
# [2 7 2]
# ...
# [2 7 8]
# [4 6 8]
# [8 8 7]]
# [[6 5 3]
# [5 5 5]
# [8 6 3]
# ...
# [4 3 6]
# [4 6 7]
# [2 8 7]]
# ...
# [[3 3 4]
# [8 4 4]
# [5 5 2]
# ...
# [4 2 5]
# [7 3 7]
# [6 5 2]]
# [[3 3 2]
# [4 6 5]
# [8 8 4]
# ...
# [7 7 5]
# [6 6 2]
# [7 5 4]]
# [[5 8 2]
# [8 5 4]
# [6 7 6]
# ...
# [4 8 6]
# [2 8 3]
# [2 8 4]]]
# [[[2.0000000e+00 8.0000000e+00 2.0000000e+00]
# [1.0213200e+03 4.0001232e+03 1.0213200e+03]
# [2.0000000e+00 7.0000000e+00 7.0000000e+00]
# ...
# [4.0001232e+03 6.0000000e+00 4.0001232e+03]
# [1.0213200e+03 7.0000000e+00 5.0000000e+00]
# [7.0000000e+00 7.0000000e+00 8.0000000e+00]]
# [[4.0001232e+03 4.0001232e+03 4.0001232e+03]
# [2.0000000e+00 7.0000000e+00 4.0001232e+03]
# [2.0000000e+00 7.0000000e+00 2.0000000e+00]
# ...
# [2.0000000e+00 7.0000000e+00 8.0000000e+00]
# [4.0001232e+03 6.0000000e+00 8.0000000e+00]
# [8.0000000e+00 8.0000000e+00 7.0000000e+00]]
# [[6.0000000e+00 5.0000000e+00 1.0213200e+03]
# [5.0000000e+00 5.0000000e+00 5.0000000e+00]
# [8.0000000e+00 6.0000000e+00 1.0213200e+03]
# ...
# [4.0001232e+03 1.0213200e+03 6.0000000e+00]
# [4.0001232e+03 6.0000000e+00 7.0000000e+00]
# [2.0000000e+00 8.0000000e+00 7.0000000e+00]]
# ...
# [[1.0213200e+03 1.0213200e+03 4.0001232e+03]
# [8.0000000e+00 4.0001232e+03 4.0001232e+03]
# [5.0000000e+00 5.0000000e+00 2.0000000e+00]
# ...
# [4.0001232e+03 2.0000000e+00 5.0000000e+00]
# [7.0000000e+00 1.0213200e+03 7.0000000e+00]
# [6.0000000e+00 5.0000000e+00 2.0000000e+00]]
# [[1.0213200e+03 1.0213200e+03 2.0000000e+00]
# [4.0001232e+03 6.0000000e+00 5.0000000e+00]
# [8.0000000e+00 8.0000000e+00 4.0001232e+03]
# ...
# [7.0000000e+00 7.0000000e+00 5.0000000e+00]
# [6.0000000e+00 6.0000000e+00 2.0000000e+00]
# [7.0000000e+00 5.0000000e+00 4.0001232e+03]]
# [[5.0000000e+00 8.0000000e+00 2.0000000e+00]
# [8.0000000e+00 5.0000000e+00 4.0001232e+03]
# [6.0000000e+00 7.0000000e+00 6.0000000e+00]
# ...
# [4.0001232e+03 8.0000000e+00 6.0000000e+00]
# [2.0000000e+00 8.0000000e+00 1.0213200e+03]
# [2.0000000e+00 8.0000000e+00 4.0001232e+03]]]
# ----------------------------
# [[[2. 2. 4. ... 7. 5. 4.]
# [7. 3. 4. ... 4. 7. 3.]
# [5. 2. 3. ... 8. 6. 6.]
# ...
# [4. 2. 2. ... 5. 5. 4.]
# [4. 5. 8. ... 4. 2. 2.]
# [5. 2. 6. ... 6. 2. 8.]]
# [[7. 5. 7. ... 2. 4. 8.]
# [6. 4. 6. ... 8. 5. 4.]
# [4. 8. 7. ... 6. 6. 8.]
# ...
# [5. 7. 4. ... 5. 8. 7.]
# [3. 2. 8. ... 7. 6. 4.]
# [5. 6. 2. ... 3. 4. 4.]]
# [[2. 2. 3. ... 3. 2. 3.]
# [7. 2. 2. ... 6. 7. 8.]
# [8. 5. 7. ... 3. 6. 3.]
# ...
# [3. 8. 5. ... 6. 8. 5.]
# [6. 8. 2. ... 2. 3. 4.]
# [2. 7. 4. ... 2. 5. 2.]]
# ...
# [[4. 6. 3. ... 7. 6. 2.]
# [4. 4. 2. ... 5. 8. 4.]
# [6. 7. 8. ... 4. 2. 6.]
# ...
# [7. 3. 6. ... 2. 7. 4.]
# [2. 6. 7. ... 3. 5. 3.]
# [5. 4. 8. ... 3. 4. 5.]]
# [[8. 7. 8. ... 5. 8. 2.]
# [7. 3. 2. ... 5. 4. 8.]
# [4. 8. 8. ... 2. 2. 5.]
# ...
# [6. 3. 2. ... 4. 6. 7.]
# [7. 7. 6. ... 2. 7. 3.]
# [8. 4. 3. ... 3. 6. 8.]]
# [[6. 3. 4. ... 2. 7. 7.]
# [2. 3. 6. ... 3. 5. 6.]
# [7. 6. 2. ... 7. 6. 8.]
# ...
# [4. 3. 2. ... 3. 4. 3.]
# [6. 2. 5. ... 2. 5. 5.]
# [7. 8. 4. ... 7. 7. 8.]]]
# [[[ 0 0 40 ... 0 0 40]
# [ 0 1021 40 ... 40 0 1021]
# [ 0 0 1021 ... 0 0 0]
# ...
# [ 40 0 0 ... 0 0 40]
# [ 40 0 0 ... 40 0 0]
# [ 0 0 0 ... 0 0 0]]
# [[ 0 0 0 ... 0 40 0]
# [ 0 40 0 ... 0 0 40]
# [ 40 0 0 ... 0 0 0]
# ...
# [ 0 0 40 ... 0 0 0]
# [1021 0 0 ... 0 0 40]
# [ 0 0 0 ... 1021 40 40]]
# [[ 0 0 1021 ... 1021 0 1021]
# [ 0 0 0 ... 0 0 0]
# [ 0 0 0 ... 1021 0 1021]
# ...
# [1021 0 0 ... 0 0 0]
# [ 0 0 0 ... 0 1021 40]
# [ 0 0 40 ... 0 0 0]]
# ...
# [[ 40 0 1021 ... 0 0 0]
# [ 40 40 0 ... 0 0 40]
# [ 0 0 0 ... 40 0 0]
# ...
# [ 0 1021 0 ... 0 0 40]
# [ 0 0 0 ... 1021 0 1021]
# [ 0 40 0 ... 1021 40 0]]
# [[ 0 0 0 ... 0 0 0]
# [ 0 1021 0 ... 0 40 0]
# [ 40 0 0 ... 0 0 0]
# ...
# [ 0 1021 0 ... 40 0 0]
# [ 0 0 0 ... 0 0 1021]
# [ 0 40 1021 ... 1021 0 0]]
# [[ 0 1021 40 ... 0 0 0]
# [ 0 1021 0 ... 1021 0 0]
# [ 0 0 0 ... 0 0 0]
# ...
# [ 40 1021 0 ... 1021 40 1021]
# [ 0 0 0 ... 0 0 0]
# [ 0 0 40 ... 0 0 0]]]
# ----------------------------
# [[[ 3 4 11]
# [ 2 9 6]
# [ 5 5 5]
# ...
# [11 9 3]
# [ 9 3 10]
# [ 5 5 4]]
# [[ 5 6 8]
# [ 7 8 9]
# [ 9 8 9]
# ...
# [ 5 6 11]
# [ 7 5 9]
# [ 1 11 3]]
# [[ 3 3 10]
# [ 4 7 2]
# [ 5 1 9]
# ...
# [11 8 5]
# [ 6 11 11]
# [ 2 10 1]]
# ...
# [[ 1 4 6]
# [ 8 7 6]
# [10 3 2]
# ...
# [10 8 3]
# [ 7 7 11]
# [ 7 7 7]]
# [[ 3 8 6]
# [ 5 5 6]
# [ 7 7 7]
# ...
# [ 1 9 9]
# [ 9 3 9]
# [10 9 3]]
# [[ 2 9 11]
# [ 7 7 9]
# [10 11 3]
# ...
# [ 6 7 11]
# [11 3 4]
# [ 5 3 2]]]
# [[['' '' '']
# ['' 'çbba' '']
# ['' '' '']
# ...
# ['' 'çbba' '']
# ['çbba' '' '']
# ['' '' '']]
# [['' '' '']
# ['' '' 'çbba']
# ['çbba' '' 'çbba']
# ...
# ['' '' '']
# ['' '' 'çbba']
# ['' '' '']]
# [['' '' '']
# ['' '' '']
# ['' '' 'çbba']
# ...
# ['' '' '']
# ['' '' '']
# ['' '' '']]
# ...
# [['' '' '']
# ['' '' '']
# ['' '' '']
# ...
# ['' '' '']
# ['' '' '']
# ['' '' '']]
# [['' '' '']
# ['' '' '']
# ['' '' '']
# ...
# ['' 'çbba' 'çbba']
# ['çbba' '' 'çbba']
# ['' 'çbba' '']]
# [['' 'çbba' '']
# ['' '' 'çbba']
# ['' '' '']
# ...
# ['' '' '']
# ['' '' '']
# ['' '' '']]]
```
Raw data
{
"_id": null,
"home_page": "https://github.com/hansalemaos/nparraymapper",
"name": "nparraymapper",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "rgb,Cython",
"author": "Johannes Fischer",
"author_email": "aulasparticularesdealemaosp@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/1b/b8/03bea0c55c22dc211520b2cabf8462639500fb15ada9722a65c0109d6c12/nparraymapper-0.10.tar.gz",
"platform": null,
"description": "\r\n# Mapping values in NumPy arrays (any shape!) with high speed - Cython -\r\n\r\n## pip install nparraymapper\r\n\r\n### Tested against Python 3.11 / Windows 10\r\n\r\n## Cython (and a C/C++ compiler) must be installed to use the optimized Cython implementation.\r\n\r\nThis module provides functions for mapping values in NumPy arrays based on a specified mapping dictionary. It works on any shape and with almost all dtypes (OBJECT NOT!!!)\r\n\r\nIt always returns a copy! The original data doesn't change!\r\n\r\n```python\r\nimport numpy as np\r\n\r\nfrom nparraymapper import map_numpy_array, map_array_with_strings\r\n\r\nnp.random.seed(0)\r\na = np.random.randint(1, 9, (10000, 10000, 4))\r\nds = map_numpy_array(a, mapdict={4: 400000, 3: 1021, 2: -1}, keepnotmapped=True)\r\nprint(a)\r\nprint(ds)\r\nprint('----------------------------')\r\na = np.random.randint(2, 9, (100, 100, 3), dtype=np.uint32)\r\nds = map_numpy_array(a, mapdict={4: 4000.1232, 3: 1021.32}, keepnotmapped=True)\r\nprint(a)\r\nprint(ds)\r\nprint('----------------------------')\r\na = np.random.randint(2, 9, (1000, 100, 8)).astype(np.float32)\r\n\r\nds = map_numpy_array(a, mapdict={4: 40, 3: 1021}, keepnotmapped=False)\r\n\r\nprint(a)\r\nprint(ds)\r\nprint('----------------------------')\r\n\r\nsubsdi = {110: 'bab\u00e7a', 14: 'bsdfvd', 9: '\u00e7bba'}\r\nsrc = np.random.randint(1, 12, (1000, 1000, 3))\r\nprint(src)\r\nout = map_array_with_strings(src, mapdict=subsdi)\r\nprint(out)\r\n\r\n# [[[5 8 6 1]\r\n# [4 4 4 8]\r\n# [2 4 6 3]\r\n# ...\r\n# [6 4 4 4]\r\n# [2 5 8 2]\r\n# [3 7 5 5]]\r\n# [[6 1 4 1]\r\n# [1 2 5 8]\r\n# [1 7 6 5]\r\n# ...\r\n# [6 7 7 1]\r\n# [5 5 4 7]\r\n# [5 8 7 6]]\r\n# [[1 2 8 5]\r\n# [2 2 8 6]\r\n# [1 3 4 4]\r\n# ...\r\n# [3 4 3 2]\r\n# [4 6 8 5]\r\n# [4 7 6 4]]\r\n# ...\r\n# [[2 7 5 5]\r\n# [2 2 8 8]\r\n# [8 8 7 8]\r\n# ...\r\n# [8 7 5 8]\r\n# [4 6 5 8]\r\n# [3 8 5 8]]\r\n# [[6 4 1 5]\r\n# [1 7 7 1]\r\n# [2 4 5 3]\r\n# ...\r\n# [1 5 5 4]\r\n# [1 8 6 7]\r\n# [4 5 8 4]]\r\n# [[4 2 3 5]\r\n# [5 7 8 2]\r\n# [1 3 4 6]\r\n# ...\r\n# [3 8 1 5]\r\n# [7 8 4 3]\r\n# [6 8 3 4]]]\r\n# [[[ 5 8 6 1]\r\n# [400000 400000 400000 8]\r\n# [ -1 400000 6 1021]\r\n# ...\r\n# [ 6 400000 400000 400000]\r\n# [ -1 5 8 -1]\r\n# [ 1021 7 5 5]]\r\n# [[ 6 1 400000 1]\r\n# [ 1 -1 5 8]\r\n# [ 1 7 6 5]\r\n# ...\r\n# [ 6 7 7 1]\r\n# [ 5 5 400000 7]\r\n# [ 5 8 7 6]]\r\n# [[ 1 -1 8 5]\r\n# [ -1 -1 8 6]\r\n# [ 1 1021 400000 400000]\r\n# ...\r\n# [ 1021 400000 1021 -1]\r\n# [400000 6 8 5]\r\n# [400000 7 6 400000]]\r\n# ...\r\n# [[ -1 7 5 5]\r\n# [ -1 -1 8 8]\r\n# [ 8 8 7 8]\r\n# ...\r\n# [ 8 7 5 8]\r\n# [400000 6 5 8]\r\n# [ 1021 8 5 8]]\r\n# [[ 6 400000 1 5]\r\n# [ 1 7 7 1]\r\n# [ -1 400000 5 1021]\r\n# ...\r\n# [ 1 5 5 400000]\r\n# [ 1 8 6 7]\r\n# [400000 5 8 400000]]\r\n# [[400000 -1 1021 5]\r\n# [ 5 7 8 -1]\r\n# [ 1 1021 400000 6]\r\n# ...\r\n# [ 1021 8 1 5]\r\n# [ 7 8 400000 1021]\r\n# [ 6 8 1021 400000]]]\r\n# ----------------------------\r\n# [[[2 8 2]\r\n# [3 4 3]\r\n# [2 7 7]\r\n# ...\r\n# [4 6 4]\r\n# [3 7 5]\r\n# [7 7 8]]\r\n# [[4 4 4]\r\n# [2 7 4]\r\n# [2 7 2]\r\n# ...\r\n# [2 7 8]\r\n# [4 6 8]\r\n# [8 8 7]]\r\n# [[6 5 3]\r\n# [5 5 5]\r\n# [8 6 3]\r\n# ...\r\n# [4 3 6]\r\n# [4 6 7]\r\n# [2 8 7]]\r\n# ...\r\n# [[3 3 4]\r\n# [8 4 4]\r\n# [5 5 2]\r\n# ...\r\n# [4 2 5]\r\n# [7 3 7]\r\n# [6 5 2]]\r\n# [[3 3 2]\r\n# [4 6 5]\r\n# [8 8 4]\r\n# ...\r\n# [7 7 5]\r\n# [6 6 2]\r\n# [7 5 4]]\r\n# [[5 8 2]\r\n# [8 5 4]\r\n# [6 7 6]\r\n# ...\r\n# [4 8 6]\r\n# [2 8 3]\r\n# [2 8 4]]]\r\n# [[[2.0000000e+00 8.0000000e+00 2.0000000e+00]\r\n# [1.0213200e+03 4.0001232e+03 1.0213200e+03]\r\n# [2.0000000e+00 7.0000000e+00 7.0000000e+00]\r\n# ...\r\n# [4.0001232e+03 6.0000000e+00 4.0001232e+03]\r\n# [1.0213200e+03 7.0000000e+00 5.0000000e+00]\r\n# [7.0000000e+00 7.0000000e+00 8.0000000e+00]]\r\n# [[4.0001232e+03 4.0001232e+03 4.0001232e+03]\r\n# [2.0000000e+00 7.0000000e+00 4.0001232e+03]\r\n# [2.0000000e+00 7.0000000e+00 2.0000000e+00]\r\n# ...\r\n# [2.0000000e+00 7.0000000e+00 8.0000000e+00]\r\n# [4.0001232e+03 6.0000000e+00 8.0000000e+00]\r\n# [8.0000000e+00 8.0000000e+00 7.0000000e+00]]\r\n# [[6.0000000e+00 5.0000000e+00 1.0213200e+03]\r\n# [5.0000000e+00 5.0000000e+00 5.0000000e+00]\r\n# [8.0000000e+00 6.0000000e+00 1.0213200e+03]\r\n# ...\r\n# [4.0001232e+03 1.0213200e+03 6.0000000e+00]\r\n# [4.0001232e+03 6.0000000e+00 7.0000000e+00]\r\n# [2.0000000e+00 8.0000000e+00 7.0000000e+00]]\r\n# ...\r\n# [[1.0213200e+03 1.0213200e+03 4.0001232e+03]\r\n# [8.0000000e+00 4.0001232e+03 4.0001232e+03]\r\n# [5.0000000e+00 5.0000000e+00 2.0000000e+00]\r\n# ...\r\n# [4.0001232e+03 2.0000000e+00 5.0000000e+00]\r\n# [7.0000000e+00 1.0213200e+03 7.0000000e+00]\r\n# [6.0000000e+00 5.0000000e+00 2.0000000e+00]]\r\n# [[1.0213200e+03 1.0213200e+03 2.0000000e+00]\r\n# [4.0001232e+03 6.0000000e+00 5.0000000e+00]\r\n# [8.0000000e+00 8.0000000e+00 4.0001232e+03]\r\n# ...\r\n# [7.0000000e+00 7.0000000e+00 5.0000000e+00]\r\n# [6.0000000e+00 6.0000000e+00 2.0000000e+00]\r\n# [7.0000000e+00 5.0000000e+00 4.0001232e+03]]\r\n# [[5.0000000e+00 8.0000000e+00 2.0000000e+00]\r\n# [8.0000000e+00 5.0000000e+00 4.0001232e+03]\r\n# [6.0000000e+00 7.0000000e+00 6.0000000e+00]\r\n# ...\r\n# [4.0001232e+03 8.0000000e+00 6.0000000e+00]\r\n# [2.0000000e+00 8.0000000e+00 1.0213200e+03]\r\n# [2.0000000e+00 8.0000000e+00 4.0001232e+03]]]\r\n# ----------------------------\r\n# [[[2. 2. 4. ... 7. 5. 4.]\r\n# [7. 3. 4. ... 4. 7. 3.]\r\n# [5. 2. 3. ... 8. 6. 6.]\r\n# ...\r\n# [4. 2. 2. ... 5. 5. 4.]\r\n# [4. 5. 8. ... 4. 2. 2.]\r\n# [5. 2. 6. ... 6. 2. 8.]]\r\n# [[7. 5. 7. ... 2. 4. 8.]\r\n# [6. 4. 6. ... 8. 5. 4.]\r\n# [4. 8. 7. ... 6. 6. 8.]\r\n# ...\r\n# [5. 7. 4. ... 5. 8. 7.]\r\n# [3. 2. 8. ... 7. 6. 4.]\r\n# [5. 6. 2. ... 3. 4. 4.]]\r\n# [[2. 2. 3. ... 3. 2. 3.]\r\n# [7. 2. 2. ... 6. 7. 8.]\r\n# [8. 5. 7. ... 3. 6. 3.]\r\n# ...\r\n# [3. 8. 5. ... 6. 8. 5.]\r\n# [6. 8. 2. ... 2. 3. 4.]\r\n# [2. 7. 4. ... 2. 5. 2.]]\r\n# ...\r\n# [[4. 6. 3. ... 7. 6. 2.]\r\n# [4. 4. 2. ... 5. 8. 4.]\r\n# [6. 7. 8. ... 4. 2. 6.]\r\n# ...\r\n# [7. 3. 6. ... 2. 7. 4.]\r\n# [2. 6. 7. ... 3. 5. 3.]\r\n# [5. 4. 8. ... 3. 4. 5.]]\r\n# [[8. 7. 8. ... 5. 8. 2.]\r\n# [7. 3. 2. ... 5. 4. 8.]\r\n# [4. 8. 8. ... 2. 2. 5.]\r\n# ...\r\n# [6. 3. 2. ... 4. 6. 7.]\r\n# [7. 7. 6. ... 2. 7. 3.]\r\n# [8. 4. 3. ... 3. 6. 8.]]\r\n# [[6. 3. 4. ... 2. 7. 7.]\r\n# [2. 3. 6. ... 3. 5. 6.]\r\n# [7. 6. 2. ... 7. 6. 8.]\r\n# ...\r\n# [4. 3. 2. ... 3. 4. 3.]\r\n# [6. 2. 5. ... 2. 5. 5.]\r\n# [7. 8. 4. ... 7. 7. 8.]]]\r\n# [[[ 0 0 40 ... 0 0 40]\r\n# [ 0 1021 40 ... 40 0 1021]\r\n# [ 0 0 1021 ... 0 0 0]\r\n# ...\r\n# [ 40 0 0 ... 0 0 40]\r\n# [ 40 0 0 ... 40 0 0]\r\n# [ 0 0 0 ... 0 0 0]]\r\n# [[ 0 0 0 ... 0 40 0]\r\n# [ 0 40 0 ... 0 0 40]\r\n# [ 40 0 0 ... 0 0 0]\r\n# ...\r\n# [ 0 0 40 ... 0 0 0]\r\n# [1021 0 0 ... 0 0 40]\r\n# [ 0 0 0 ... 1021 40 40]]\r\n# [[ 0 0 1021 ... 1021 0 1021]\r\n# [ 0 0 0 ... 0 0 0]\r\n# [ 0 0 0 ... 1021 0 1021]\r\n# ...\r\n# [1021 0 0 ... 0 0 0]\r\n# [ 0 0 0 ... 0 1021 40]\r\n# [ 0 0 40 ... 0 0 0]]\r\n# ...\r\n# [[ 40 0 1021 ... 0 0 0]\r\n# [ 40 40 0 ... 0 0 40]\r\n# [ 0 0 0 ... 40 0 0]\r\n# ...\r\n# [ 0 1021 0 ... 0 0 40]\r\n# [ 0 0 0 ... 1021 0 1021]\r\n# [ 0 40 0 ... 1021 40 0]]\r\n# [[ 0 0 0 ... 0 0 0]\r\n# [ 0 1021 0 ... 0 40 0]\r\n# [ 40 0 0 ... 0 0 0]\r\n# ...\r\n# [ 0 1021 0 ... 40 0 0]\r\n# [ 0 0 0 ... 0 0 1021]\r\n# [ 0 40 1021 ... 1021 0 0]]\r\n# [[ 0 1021 40 ... 0 0 0]\r\n# [ 0 1021 0 ... 1021 0 0]\r\n# [ 0 0 0 ... 0 0 0]\r\n# ...\r\n# [ 40 1021 0 ... 1021 40 1021]\r\n# [ 0 0 0 ... 0 0 0]\r\n# [ 0 0 40 ... 0 0 0]]]\r\n# ----------------------------\r\n# [[[ 3 4 11]\r\n# [ 2 9 6]\r\n# [ 5 5 5]\r\n# ...\r\n# [11 9 3]\r\n# [ 9 3 10]\r\n# [ 5 5 4]]\r\n# [[ 5 6 8]\r\n# [ 7 8 9]\r\n# [ 9 8 9]\r\n# ...\r\n# [ 5 6 11]\r\n# [ 7 5 9]\r\n# [ 1 11 3]]\r\n# [[ 3 3 10]\r\n# [ 4 7 2]\r\n# [ 5 1 9]\r\n# ...\r\n# [11 8 5]\r\n# [ 6 11 11]\r\n# [ 2 10 1]]\r\n# ...\r\n# [[ 1 4 6]\r\n# [ 8 7 6]\r\n# [10 3 2]\r\n# ...\r\n# [10 8 3]\r\n# [ 7 7 11]\r\n# [ 7 7 7]]\r\n# [[ 3 8 6]\r\n# [ 5 5 6]\r\n# [ 7 7 7]\r\n# ...\r\n# [ 1 9 9]\r\n# [ 9 3 9]\r\n# [10 9 3]]\r\n# [[ 2 9 11]\r\n# [ 7 7 9]\r\n# [10 11 3]\r\n# ...\r\n# [ 6 7 11]\r\n# [11 3 4]\r\n# [ 5 3 2]]]\r\n# [[['' '' '']\r\n# ['' '\u00e7bba' '']\r\n# ['' '' '']\r\n# ...\r\n# ['' '\u00e7bba' '']\r\n# ['\u00e7bba' '' '']\r\n# ['' '' '']]\r\n# [['' '' '']\r\n# ['' '' '\u00e7bba']\r\n# ['\u00e7bba' '' '\u00e7bba']\r\n# ...\r\n# ['' '' '']\r\n# ['' '' '\u00e7bba']\r\n# ['' '' '']]\r\n# [['' '' '']\r\n# ['' '' '']\r\n# ['' '' '\u00e7bba']\r\n# ...\r\n# ['' '' '']\r\n# ['' '' '']\r\n# ['' '' '']]\r\n# ...\r\n# [['' '' '']\r\n# ['' '' '']\r\n# ['' '' '']\r\n# ...\r\n# ['' '' '']\r\n# ['' '' '']\r\n# ['' '' '']]\r\n# [['' '' '']\r\n# ['' '' '']\r\n# ['' '' '']\r\n# ...\r\n# ['' '\u00e7bba' '\u00e7bba']\r\n# ['\u00e7bba' '' '\u00e7bba']\r\n# ['' '\u00e7bba' '']]\r\n# [['' '\u00e7bba' '']\r\n# ['' '' '\u00e7bba']\r\n# ['' '' '']\r\n# ...\r\n# ['' '' '']\r\n# ['' '' '']\r\n# ['' '' '']]]\r\n\r\n```\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Mapping values in NumPy arrays (any shape!) with high speed - Cython -",
"version": "0.10",
"project_urls": {
"Homepage": "https://github.com/hansalemaos/nparraymapper"
},
"split_keywords": [
"rgb",
"cython"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "c69ec033fdeafd78afe6e3061416dd21c615f8fc6482fc80a4e65052a7c1fc68",
"md5": "0f2e0ad0f66c929246bfa5c5ac5c4c04",
"sha256": "ea0cf0d00195c5bc0d6220dcc6545194ad4c81e2da32edc7bb93017cbc049ebe"
},
"downloads": -1,
"filename": "nparraymapper-0.10-py3-none-any.whl",
"has_sig": false,
"md5_digest": "0f2e0ad0f66c929246bfa5c5ac5c4c04",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 24978,
"upload_time": "2023-12-03T01:30:04",
"upload_time_iso_8601": "2023-12-03T01:30:04.616930Z",
"url": "https://files.pythonhosted.org/packages/c6/9e/c033fdeafd78afe6e3061416dd21c615f8fc6482fc80a4e65052a7c1fc68/nparraymapper-0.10-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1bb803bea0c55c22dc211520b2cabf8462639500fb15ada9722a65c0109d6c12",
"md5": "59e3eceeab2aef29de13222c00b6a5fd",
"sha256": "d5fe77e6d0ea25c58862ca3e21af84f001a6faaef529a6cf00ff26771f44456d"
},
"downloads": -1,
"filename": "nparraymapper-0.10.tar.gz",
"has_sig": false,
"md5_digest": "59e3eceeab2aef29de13222c00b6a5fd",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 25420,
"upload_time": "2023-12-03T01:30:07",
"upload_time_iso_8601": "2023-12-03T01:30:07.024742Z",
"url": "https://files.pythonhosted.org/packages/1b/b8/03bea0c55c22dc211520b2cabf8462639500fb15ada9722a65c0109d6c12/nparraymapper-0.10.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-12-03 01:30:07",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "hansalemaos",
"github_project": "nparraymapper",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "nparraymapper"
}