npeccv6


Namenpeccv6 JSON
Version 0.1.10 PyPI version JSON
download
home_pageNone
SummaryPython package for root recognition and robot controll
upload_time2024-12-23 17:38:49
maintainerNone
docs_urlNone
authorHubert Waleńczak
requires_python<3.12,>=3.11
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ## Project Name: NPECCV6

This project is a comprehensive package for advanced data processing, predictive modeling, postprocessing of plant roots, and integration with Azure Machine Learning services. Below is an overview of the project structure and key details.
### Folder Structure

```bash
├── Azure_scripts/              # Scripts for interacting with Azure ML
├── dist/                       # Distributable Python packages
├── docs/                       # Documentation source and build files
├── tests/                      # Test cases for the project
├── Dockerfile                  # Docker container configuration
├── pyproject.toml              # Project configuration file
├── README.md                   # Project README file
└── npeccv6/                    # Main package folder
    ├── __init__.py                 # Package initialization
    ├── api.py                      # API functions for package operations
    ├── azure_scripts/              # Azure-specific scripts for pipeline
    ├── create_model.py             # Model creation logic
    ├── hyperparametetuning.py      # Hyperparameter tuning functionality
    ├── log/                        # Log files
    ├── mlruns/                     # MLflow experiment tracking files
    ├── model_func.py               # Core model-related functions
    ├── model_history.json          # Saved model history
    ├── postprocessing.py           # Postprocessing functions
    ├── predict.py                  # Prediction workflow
    ├── preprocessing.py            # Data preprocessing functionality
    ├── register.py                 # Model registration functions
    ├── scoring.py                  # Model scoring utilities
    ├── train.py                    # Model training logic
    ├── user_data/                  # User data for interacting with api
    └── utils.py                    # General utility functions
```

### Getting Started
#### Installation

1. Clone the repository:

```bash
git clone <repository_url>
cd <repository_name>
```

2. Install the package using pip:

```bash
pip install dist/npeccv6-0.1.1-py3-none-any.whl
```

3. Install additional dependencies if required:
```bash
poetry install
```


### How to Use the CLI with Folder Structure
w

### Features

- Model Training and Scoring: Comprehensive scripts (train.py, scoring.py) for training and evaluating machine learning models.
- Data Preprocessing: Utilities for data cleaning, normalization, and augmentation (preprocessing.py).
- Azure ML Integration: Scripts to set up and interact with Azure ML resources (azure_scripts/).
- Logging: Centralized logging system for debugging and tracking (log/).
- Prediction and Postprocessing: Ready-to-use prediction pipeline (predict.py) and result enhancement tools (postprocessing.py).

### Documentation

Find the complete project documentation in the docs/ folder. Built documentation is available in the docs/build/html/ directory.

For API only documentation and interactions start fastapi
```bash
cd npeccv6
poetry run fastapi run api.py
```
and visit address shown in terminal. It sould begin with 127.0.0.1

### Contribution

1. Fork the repository and create your feature branch:

```bash
git checkout -b feature/new-feature
```

2. Commit your changes and push to the branch:
```bash
git commit -am 'Add new feature'
git push origin feature/new-feature
```
3. Create a pull request.



            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "npeccv6",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.12,>=3.11",
    "maintainer_email": null,
    "keywords": null,
    "author": "Hubert Wale\u0144czak",
    "author_email": "220817@buas.nl",
    "download_url": "https://files.pythonhosted.org/packages/d6/2b/a508a7e2fcca7bb300e2baeda5231874d3465a12405e52985fb5d0feff8a/npeccv6-0.1.10.tar.gz",
    "platform": null,
    "description": "## Project Name: NPECCV6\n\nThis project is a comprehensive package for advanced data processing, predictive modeling, postprocessing of plant roots, and integration with Azure Machine Learning services. Below is an overview of the project structure and key details.\n### Folder Structure\n\n```bash\n\u251c\u2500\u2500 Azure_scripts/              # Scripts for interacting with Azure ML\n\u251c\u2500\u2500 dist/                       # Distributable Python packages\n\u251c\u2500\u2500 docs/                       # Documentation source and build files\n\u251c\u2500\u2500 tests/                      # Test cases for the project\n\u251c\u2500\u2500 Dockerfile                  # Docker container configuration\n\u251c\u2500\u2500 pyproject.toml              # Project configuration file\n\u251c\u2500\u2500 README.md                   # Project README file\n\u2514\u2500\u2500 npeccv6/                    # Main package folder\n    \u251c\u2500\u2500 __init__.py                 # Package initialization\n    \u251c\u2500\u2500 api.py                      # API functions for package operations\n    \u251c\u2500\u2500 azure_scripts/              # Azure-specific scripts for pipeline\n    \u251c\u2500\u2500 create_model.py             # Model creation logic\n    \u251c\u2500\u2500 hyperparametetuning.py      # Hyperparameter tuning functionality\n    \u251c\u2500\u2500 log/                        # Log files\n    \u251c\u2500\u2500 mlruns/                     # MLflow experiment tracking files\n    \u251c\u2500\u2500 model_func.py               # Core model-related functions\n    \u251c\u2500\u2500 model_history.json          # Saved model history\n    \u251c\u2500\u2500 postprocessing.py           # Postprocessing functions\n    \u251c\u2500\u2500 predict.py                  # Prediction workflow\n    \u251c\u2500\u2500 preprocessing.py            # Data preprocessing functionality\n    \u251c\u2500\u2500 register.py                 # Model registration functions\n    \u251c\u2500\u2500 scoring.py                  # Model scoring utilities\n    \u251c\u2500\u2500 train.py                    # Model training logic\n    \u251c\u2500\u2500 user_data/                  # User data for interacting with api\n    \u2514\u2500\u2500 utils.py                    # General utility functions\n```\n\n### Getting Started\n#### Installation\n\n1. Clone the repository:\n\n```bash\ngit clone <repository_url>\ncd <repository_name>\n```\n\n2. Install the package using pip:\n\n```bash\npip install dist/npeccv6-0.1.1-py3-none-any.whl\n```\n\n3. Install additional dependencies if required:\n```bash\npoetry install\n```\n\n\n### How to Use the CLI with Folder Structure\nw\n\n### Features\n\n- Model Training and Scoring: Comprehensive scripts (train.py, scoring.py) for training and evaluating machine learning models.\n- Data Preprocessing: Utilities for data cleaning, normalization, and augmentation (preprocessing.py).\n- Azure ML Integration: Scripts to set up and interact with Azure ML resources (azure_scripts/).\n- Logging: Centralized logging system for debugging and tracking (log/).\n- Prediction and Postprocessing: Ready-to-use prediction pipeline (predict.py) and result enhancement tools (postprocessing.py).\n\n### Documentation\n\nFind the complete project documentation in the docs/ folder. Built documentation is available in the docs/build/html/ directory.\n\nFor API only documentation and interactions start fastapi\n```bash\ncd npeccv6\npoetry run fastapi run api.py\n```\nand visit address shown in terminal. It sould begin with 127.0.0.1\n\n### Contribution\n\n1. Fork the repository and create your feature branch:\n\n```bash\ngit checkout -b feature/new-feature\n```\n\n2. Commit your changes and push to the branch:\n```bash\ngit commit -am 'Add new feature'\ngit push origin feature/new-feature\n```\n3. Create a pull request.\n\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Python package for root recognition and robot controll",
    "version": "0.1.10",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3feb5e2f20eed596204ef0b8c24b9b4caba98d2c3568d8cb48ff88e62fd32e4a",
                "md5": "d03604212ab188c0d7ddfb38919c397a",
                "sha256": "d6efa1d10e39a041e1900547b4bde3b40c23142b2451f2329541208a664e1de0"
            },
            "downloads": -1,
            "filename": "npeccv6-0.1.10-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d03604212ab188c0d7ddfb38919c397a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.12,>=3.11",
            "size": 2925658,
            "upload_time": "2024-12-23T17:38:42",
            "upload_time_iso_8601": "2024-12-23T17:38:42.905622Z",
            "url": "https://files.pythonhosted.org/packages/3f/eb/5e2f20eed596204ef0b8c24b9b4caba98d2c3568d8cb48ff88e62fd32e4a/npeccv6-0.1.10-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d62ba508a7e2fcca7bb300e2baeda5231874d3465a12405e52985fb5d0feff8a",
                "md5": "e602b3050bfe2ad1473b99cd6603e389",
                "sha256": "aaec69107c41f3cbb438f2f602ab04e15cb842000d80d114cb7737a1baf1db86"
            },
            "downloads": -1,
            "filename": "npeccv6-0.1.10.tar.gz",
            "has_sig": false,
            "md5_digest": "e602b3050bfe2ad1473b99cd6603e389",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.12,>=3.11",
            "size": 2810710,
            "upload_time": "2024-12-23T17:38:49",
            "upload_time_iso_8601": "2024-12-23T17:38:49.305587Z",
            "url": "https://files.pythonhosted.org/packages/d6/2b/a508a7e2fcca7bb300e2baeda5231874d3465a12405e52985fb5d0feff8a/npeccv6-0.1.10.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-23 17:38:49",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "npeccv6"
}
        
Elapsed time: 0.43871s