Name | npeccv6 JSON |
Version |
0.1.10
JSON |
| download |
home_page | None |
Summary | Python package for root recognition and robot controll |
upload_time | 2024-12-23 17:38:49 |
maintainer | None |
docs_url | None |
author | Hubert Waleńczak |
requires_python | <3.12,>=3.11 |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
## Project Name: NPECCV6
This project is a comprehensive package for advanced data processing, predictive modeling, postprocessing of plant roots, and integration with Azure Machine Learning services. Below is an overview of the project structure and key details.
### Folder Structure
```bash
├── Azure_scripts/ # Scripts for interacting with Azure ML
├── dist/ # Distributable Python packages
├── docs/ # Documentation source and build files
├── tests/ # Test cases for the project
├── Dockerfile # Docker container configuration
├── pyproject.toml # Project configuration file
├── README.md # Project README file
└── npeccv6/ # Main package folder
├── __init__.py # Package initialization
├── api.py # API functions for package operations
├── azure_scripts/ # Azure-specific scripts for pipeline
├── create_model.py # Model creation logic
├── hyperparametetuning.py # Hyperparameter tuning functionality
├── log/ # Log files
├── mlruns/ # MLflow experiment tracking files
├── model_func.py # Core model-related functions
├── model_history.json # Saved model history
├── postprocessing.py # Postprocessing functions
├── predict.py # Prediction workflow
├── preprocessing.py # Data preprocessing functionality
├── register.py # Model registration functions
├── scoring.py # Model scoring utilities
├── train.py # Model training logic
├── user_data/ # User data for interacting with api
└── utils.py # General utility functions
```
### Getting Started
#### Installation
1. Clone the repository:
```bash
git clone <repository_url>
cd <repository_name>
```
2. Install the package using pip:
```bash
pip install dist/npeccv6-0.1.1-py3-none-any.whl
```
3. Install additional dependencies if required:
```bash
poetry install
```
### How to Use the CLI with Folder Structure
w
### Features
- Model Training and Scoring: Comprehensive scripts (train.py, scoring.py) for training and evaluating machine learning models.
- Data Preprocessing: Utilities for data cleaning, normalization, and augmentation (preprocessing.py).
- Azure ML Integration: Scripts to set up and interact with Azure ML resources (azure_scripts/).
- Logging: Centralized logging system for debugging and tracking (log/).
- Prediction and Postprocessing: Ready-to-use prediction pipeline (predict.py) and result enhancement tools (postprocessing.py).
### Documentation
Find the complete project documentation in the docs/ folder. Built documentation is available in the docs/build/html/ directory.
For API only documentation and interactions start fastapi
```bash
cd npeccv6
poetry run fastapi run api.py
```
and visit address shown in terminal. It sould begin with 127.0.0.1
### Contribution
1. Fork the repository and create your feature branch:
```bash
git checkout -b feature/new-feature
```
2. Commit your changes and push to the branch:
```bash
git commit -am 'Add new feature'
git push origin feature/new-feature
```
3. Create a pull request.
Raw data
{
"_id": null,
"home_page": null,
"name": "npeccv6",
"maintainer": null,
"docs_url": null,
"requires_python": "<3.12,>=3.11",
"maintainer_email": null,
"keywords": null,
"author": "Hubert Wale\u0144czak",
"author_email": "220817@buas.nl",
"download_url": "https://files.pythonhosted.org/packages/d6/2b/a508a7e2fcca7bb300e2baeda5231874d3465a12405e52985fb5d0feff8a/npeccv6-0.1.10.tar.gz",
"platform": null,
"description": "## Project Name: NPECCV6\n\nThis project is a comprehensive package for advanced data processing, predictive modeling, postprocessing of plant roots, and integration with Azure Machine Learning services. Below is an overview of the project structure and key details.\n### Folder Structure\n\n```bash\n\u251c\u2500\u2500 Azure_scripts/ # Scripts for interacting with Azure ML\n\u251c\u2500\u2500 dist/ # Distributable Python packages\n\u251c\u2500\u2500 docs/ # Documentation source and build files\n\u251c\u2500\u2500 tests/ # Test cases for the project\n\u251c\u2500\u2500 Dockerfile # Docker container configuration\n\u251c\u2500\u2500 pyproject.toml # Project configuration file\n\u251c\u2500\u2500 README.md # Project README file\n\u2514\u2500\u2500 npeccv6/ # Main package folder\n \u251c\u2500\u2500 __init__.py # Package initialization\n \u251c\u2500\u2500 api.py # API functions for package operations\n \u251c\u2500\u2500 azure_scripts/ # Azure-specific scripts for pipeline\n \u251c\u2500\u2500 create_model.py # Model creation logic\n \u251c\u2500\u2500 hyperparametetuning.py # Hyperparameter tuning functionality\n \u251c\u2500\u2500 log/ # Log files\n \u251c\u2500\u2500 mlruns/ # MLflow experiment tracking files\n \u251c\u2500\u2500 model_func.py # Core model-related functions\n \u251c\u2500\u2500 model_history.json # Saved model history\n \u251c\u2500\u2500 postprocessing.py # Postprocessing functions\n \u251c\u2500\u2500 predict.py # Prediction workflow\n \u251c\u2500\u2500 preprocessing.py # Data preprocessing functionality\n \u251c\u2500\u2500 register.py # Model registration functions\n \u251c\u2500\u2500 scoring.py # Model scoring utilities\n \u251c\u2500\u2500 train.py # Model training logic\n \u251c\u2500\u2500 user_data/ # User data for interacting with api\n \u2514\u2500\u2500 utils.py # General utility functions\n```\n\n### Getting Started\n#### Installation\n\n1. Clone the repository:\n\n```bash\ngit clone <repository_url>\ncd <repository_name>\n```\n\n2. Install the package using pip:\n\n```bash\npip install dist/npeccv6-0.1.1-py3-none-any.whl\n```\n\n3. Install additional dependencies if required:\n```bash\npoetry install\n```\n\n\n### How to Use the CLI with Folder Structure\nw\n\n### Features\n\n- Model Training and Scoring: Comprehensive scripts (train.py, scoring.py) for training and evaluating machine learning models.\n- Data Preprocessing: Utilities for data cleaning, normalization, and augmentation (preprocessing.py).\n- Azure ML Integration: Scripts to set up and interact with Azure ML resources (azure_scripts/).\n- Logging: Centralized logging system for debugging and tracking (log/).\n- Prediction and Postprocessing: Ready-to-use prediction pipeline (predict.py) and result enhancement tools (postprocessing.py).\n\n### Documentation\n\nFind the complete project documentation in the docs/ folder. Built documentation is available in the docs/build/html/ directory.\n\nFor API only documentation and interactions start fastapi\n```bash\ncd npeccv6\npoetry run fastapi run api.py\n```\nand visit address shown in terminal. It sould begin with 127.0.0.1\n\n### Contribution\n\n1. Fork the repository and create your feature branch:\n\n```bash\ngit checkout -b feature/new-feature\n```\n\n2. Commit your changes and push to the branch:\n```bash\ngit commit -am 'Add new feature'\ngit push origin feature/new-feature\n```\n3. Create a pull request.\n\n\n",
"bugtrack_url": null,
"license": null,
"summary": "Python package for root recognition and robot controll",
"version": "0.1.10",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "3feb5e2f20eed596204ef0b8c24b9b4caba98d2c3568d8cb48ff88e62fd32e4a",
"md5": "d03604212ab188c0d7ddfb38919c397a",
"sha256": "d6efa1d10e39a041e1900547b4bde3b40c23142b2451f2329541208a664e1de0"
},
"downloads": -1,
"filename": "npeccv6-0.1.10-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d03604212ab188c0d7ddfb38919c397a",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.12,>=3.11",
"size": 2925658,
"upload_time": "2024-12-23T17:38:42",
"upload_time_iso_8601": "2024-12-23T17:38:42.905622Z",
"url": "https://files.pythonhosted.org/packages/3f/eb/5e2f20eed596204ef0b8c24b9b4caba98d2c3568d8cb48ff88e62fd32e4a/npeccv6-0.1.10-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d62ba508a7e2fcca7bb300e2baeda5231874d3465a12405e52985fb5d0feff8a",
"md5": "e602b3050bfe2ad1473b99cd6603e389",
"sha256": "aaec69107c41f3cbb438f2f602ab04e15cb842000d80d114cb7737a1baf1db86"
},
"downloads": -1,
"filename": "npeccv6-0.1.10.tar.gz",
"has_sig": false,
"md5_digest": "e602b3050bfe2ad1473b99cd6603e389",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<3.12,>=3.11",
"size": 2810710,
"upload_time": "2024-12-23T17:38:49",
"upload_time_iso_8601": "2024-12-23T17:38:49.305587Z",
"url": "https://files.pythonhosted.org/packages/d6/2b/a508a7e2fcca7bb300e2baeda5231874d3465a12405e52985fb5d0feff8a/npeccv6-0.1.10.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-23 17:38:49",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "npeccv6"
}