npstructures


Namenpstructures JSON
Version 0.2.19 PyPI version JSON
download
home_pagehttps://github.com/knutdrand/npstructures
SummarySimple data structures that augments the numpy library
upload_time2024-05-31 08:54:06
maintainerNone
docs_urlNone
authorKnut Rand
requires_python>=3.6
licenseMIT license
keywords npstructures
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ================
Numpy Structures
================


.. image:: https://img.shields.io/pypi/v/npstructures.svg
        :target: https://pypi.python.org/pypi/npstructures

.. image:: https://github.com/knutdrand/npstructures/actions/workflows/python-install-and-test.yml/badge.svg
        :target: https://github.com/knutdrand/npstructures/actions/workflows/python-install-and-test.yml

.. image:: https://readthedocs.org/projects/npstructures/badge/?version=latest
        :target: https://npstructures.readthedocs.io/en/latest/?version=latest
        :alt: Documentation Status

Simple data structures that augments the numpy library


* Free software: MIT license
* Documentation: https://npstructures.readthedocs.io.


Features
--------
The main feature is the `RaggedArray` class which enables `numpy`-like behaviour and performance for arrays where
the length of the rows differ.

`RaggedArray` is meant as a drop-in replacement for `numpy` when you have arrays with differing row lengths.
As such, familiarity with `numpy` is assumed. The simplest way to construct a `RaggedArray` is from a list of lists::

    >>> from npstructures import RaggedArray
    >>> ra = RaggedArray([[1, 2], [4, 1, 3, 7], [9], [8, 7, 3, 4]])

A `RaggedArray` can be indexed much like a `numpy` array::

    >>> ra[1]
    array([4, 1, 3, 7])
    >>> ra[1, 3]
    7
    >>> ra[1:3]
    RaggedArray([[4, 1, 3, 7], [9]])
    >>> ra[[0, 3]]
    RaggedArray([[1, 2], [8, 7, 3, 4]])
    >>> ra[0] = [0, 0]
    >>> ra
    RaggedArray([[0, 0], [4, 1, 3, 7], [9], [8, 7, 3, 4]])
    >>> ra[1:3] = [[10], [20]]
    >>> ra
    RaggedArray([[0, 0], [10, 10, 10, 10], [20], [8, 7, 3, 4]])
    >>> ra[[0, 2, 3]] = RaggedArray([[2, 2], [3], [5, 5, 5, 5]])
    >>> ra
    RaggedArray([[2, 2], [10, 10, 10, 10], [3], [5, 5, 5, 5]])

`numpy ufuncs` can be applied to `RaggedArray` objects::

    >>> ra + 1
    RaggedArray([[2, 3], [5, 2, 4, 8], [10], [9, 8, 4, 5]])
    >>> ra*2
    RaggedArray([[2, 4], [8, 2, 6, 14], [18], [16, 14, 6, 8]])
    >>> ra + [[1], [10], [100], [1000]]
    RaggedArray([[2, 3], [14, 11, 13, 17], [109], [1008, 1007, 1003, 1004]])
    >>> ra - (ra*2)
    RaggedArray([[-1, -2], [-4, -1, -3, -7], [-9], [-8, -7, -3, -4]])

Some `numpy` functions can be applied to `RaggedArray` objects::

    >>> import numpy as np
    >>> ra = RaggedArray([[1, 2], [4, 1, 3, 7], [9], [8, 7, 3, 4]])
    >>> np.concatenate((ra, ra*10))
    RaggedArray([[1, 2], [4, 1, 3, 7], [9], [8, 7, 3, 4], [10, 20], [40, 10, 30, 70], [90], [80, 70, 30, 40]])
    >>> np.nonzero(ra>3)
    (array([1, 1, 2, 3, 3, 3]), array([0, 3, 0, 0, 1, 3]))
    >>> np.ones_like(ra)
    RaggedArray([[1, 1], [1, 1, 1, 1], [1], [1, 1, 1, 1]])


In addition to this. `HashTable` and `Counter` provides simple `dict`-like behaviour for `numpy` arrays:

`HashTable` can be used for `dict`-like functionality of `numpy` arrays. The simplest way to construct a `HashTable` is from an array of keys and an array of values (note that the set of keys cannot be modified after the initialization of the object)::

    >>> table = HashTable([11, 113, 1191, 11199], [2, 3, 5, 7])
    >>> table[11]
    array([2])
    >>> table[[113, 11199]]
    array([3, 7])
    >>> table[11]=1000
    >>> table
    HashTable([  113  1191    11 11199], [   3    5 1000    7])
    >>> table[[113, 1191]]=2000
    >>> table
    HashTable([  113  1191    11 11199], [2000 2000 1000    7])
    >>> table[[113, 1191, 11, 11191]] = [1, 2, 3, 4]
    >>> table[[113, 1191, 11, 11199]] = [1, 2, 3, 4]
    >>> table
    HashTable([  113  1191    11 11199], [1 2 3 4])

`Counter` objects supports counting the occurances of a predefined set of keys in a set of samples. For instance, to count the occurances of `3` and `1` in the list ``[3, 2, 1, 3, 4, 1, 1]``::

    >>> from npstructures import Counter
    >>> counter = Counter([3, 1])
    >>> counter.count([3, 2, 1, 3, 4, 1, 1])
    >>> counter
    Counter([3 1], [2 3])

Credits
-------

This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.

.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage


=======
History
=======

0.2.0 (2022-06-17)
------------------
* Tested indexing, ufuncs and arrayfunctions with hypothesis


0.1.0 (2021-12-27)
------------------

* First release on PyPI.


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/knutdrand/npstructures",
    "name": "npstructures",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "npstructures",
    "author": "Knut Rand",
    "author_email": "knutdrand@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/f5/72/e2574d0f865879218cbc40a018c4935bb4475c5a8a14b96fd3de21092c5a/npstructures-0.2.19.tar.gz",
    "platform": null,
    "description": "================\nNumpy Structures\n================\n\n\n.. image:: https://img.shields.io/pypi/v/npstructures.svg\n        :target: https://pypi.python.org/pypi/npstructures\n\n.. image:: https://github.com/knutdrand/npstructures/actions/workflows/python-install-and-test.yml/badge.svg\n        :target: https://github.com/knutdrand/npstructures/actions/workflows/python-install-and-test.yml\n\n.. image:: https://readthedocs.org/projects/npstructures/badge/?version=latest\n        :target: https://npstructures.readthedocs.io/en/latest/?version=latest\n        :alt: Documentation Status\n\nSimple data structures that augments the numpy library\n\n\n* Free software: MIT license\n* Documentation: https://npstructures.readthedocs.io.\n\n\nFeatures\n--------\nThe main feature is the `RaggedArray` class which enables `numpy`-like behaviour and performance for arrays where\nthe length of the rows differ.\n\n`RaggedArray` is meant as a drop-in replacement for `numpy` when you have arrays with differing row lengths.\nAs such, familiarity with `numpy` is assumed. The simplest way to construct a `RaggedArray` is from a list of lists::\n\n    >>> from npstructures import RaggedArray\n    >>> ra = RaggedArray([[1, 2], [4, 1, 3, 7], [9], [8, 7, 3, 4]])\n\nA `RaggedArray` can be indexed much like a `numpy` array::\n\n    >>> ra[1]\n    array([4, 1, 3, 7])\n    >>> ra[1, 3]\n    7\n    >>> ra[1:3]\n    RaggedArray([[4, 1, 3, 7], [9]])\n    >>> ra[[0, 3]]\n    RaggedArray([[1, 2], [8, 7, 3, 4]])\n    >>> ra[0] = [0, 0]\n    >>> ra\n    RaggedArray([[0, 0], [4, 1, 3, 7], [9], [8, 7, 3, 4]])\n    >>> ra[1:3] = [[10], [20]]\n    >>> ra\n    RaggedArray([[0, 0], [10, 10, 10, 10], [20], [8, 7, 3, 4]])\n    >>> ra[[0, 2, 3]] = RaggedArray([[2, 2], [3], [5, 5, 5, 5]])\n    >>> ra\n    RaggedArray([[2, 2], [10, 10, 10, 10], [3], [5, 5, 5, 5]])\n\n`numpy ufuncs` can be applied to `RaggedArray` objects::\n\n    >>> ra + 1\n    RaggedArray([[2, 3], [5, 2, 4, 8], [10], [9, 8, 4, 5]])\n    >>> ra*2\n    RaggedArray([[2, 4], [8, 2, 6, 14], [18], [16, 14, 6, 8]])\n    >>> ra + [[1], [10], [100], [1000]]\n    RaggedArray([[2, 3], [14, 11, 13, 17], [109], [1008, 1007, 1003, 1004]])\n    >>> ra - (ra*2)\n    RaggedArray([[-1, -2], [-4, -1, -3, -7], [-9], [-8, -7, -3, -4]])\n\nSome `numpy` functions can be applied to `RaggedArray` objects::\n\n    >>> import numpy as np\n    >>> ra = RaggedArray([[1, 2], [4, 1, 3, 7], [9], [8, 7, 3, 4]])\n    >>> np.concatenate((ra, ra*10))\n    RaggedArray([[1, 2], [4, 1, 3, 7], [9], [8, 7, 3, 4], [10, 20], [40, 10, 30, 70], [90], [80, 70, 30, 40]])\n    >>> np.nonzero(ra>3)\n    (array([1, 1, 2, 3, 3, 3]), array([0, 3, 0, 0, 1, 3]))\n    >>> np.ones_like(ra)\n    RaggedArray([[1, 1], [1, 1, 1, 1], [1], [1, 1, 1, 1]])\n\n\nIn addition to this. `HashTable` and `Counter` provides simple `dict`-like behaviour for `numpy` arrays:\n\n`HashTable` can be used for `dict`-like functionality of `numpy` arrays. The simplest way to construct a `HashTable` is from an array of keys and an array of values (note that the set of keys cannot be modified after the initialization of the object)::\n\n    >>> table = HashTable([11, 113, 1191, 11199], [2, 3, 5, 7])\n    >>> table[11]\n    array([2])\n    >>> table[[113, 11199]]\n    array([3, 7])\n    >>> table[11]=1000\n    >>> table\n    HashTable([  113  1191    11 11199], [   3    5 1000    7])\n    >>> table[[113, 1191]]=2000\n    >>> table\n    HashTable([  113  1191    11 11199], [2000 2000 1000    7])\n    >>> table[[113, 1191, 11, 11191]] = [1, 2, 3, 4]\n    >>> table[[113, 1191, 11, 11199]] = [1, 2, 3, 4]\n    >>> table\n    HashTable([  113  1191    11 11199], [1 2 3 4])\n\n`Counter` objects supports counting the occurances of a predefined set of keys in a set of samples. For instance, to count the occurances of `3` and `1` in the list ``[3, 2, 1, 3, 4, 1, 1]``::\n\n    >>> from npstructures import Counter\n    >>> counter = Counter([3, 1])\n    >>> counter.count([3, 2, 1, 3, 4, 1, 1])\n    >>> counter\n    Counter([3 1], [2 3])\n\nCredits\n-------\n\nThis package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.\n\n.. _Cookiecutter: https://github.com/audreyr/cookiecutter\n.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage\n\n\n=======\nHistory\n=======\n\n0.2.0 (2022-06-17)\n------------------\n* Tested indexing, ufuncs and arrayfunctions with hypothesis\n\n\n0.1.0 (2021-12-27)\n------------------\n\n* First release on PyPI.\n\n",
    "bugtrack_url": null,
    "license": "MIT license",
    "summary": "Simple data structures that augments the numpy library",
    "version": "0.2.19",
    "project_urls": {
        "Homepage": "https://github.com/knutdrand/npstructures"
    },
    "split_keywords": [
        "npstructures"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2a6bfdbd754e75c16c1da91f159170d2b25e9028f21bbc5d2102028b9912cefb",
                "md5": "dbe185716165d33f6383a5e8f9bb8d09",
                "sha256": "0d833606978cfd5b01b5fb3b74bb9896a53a1e1f82d4b5cc09def1920e41fdbd"
            },
            "downloads": -1,
            "filename": "npstructures-0.2.19-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "dbe185716165d33f6383a5e8f9bb8d09",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.6",
            "size": 36360,
            "upload_time": "2024-05-31T08:54:04",
            "upload_time_iso_8601": "2024-05-31T08:54:04.317572Z",
            "url": "https://files.pythonhosted.org/packages/2a/6b/fdbd754e75c16c1da91f159170d2b25e9028f21bbc5d2102028b9912cefb/npstructures-0.2.19-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f572e2574d0f865879218cbc40a018c4935bb4475c5a8a14b96fd3de21092c5a",
                "md5": "ea8d82a03cb9fdbbba0f7a5961f3816f",
                "sha256": "8091ff5f6e3f0bef8f8c847a95d784366762bc4426616c02381a071228b9b7fb"
            },
            "downloads": -1,
            "filename": "npstructures-0.2.19.tar.gz",
            "has_sig": false,
            "md5_digest": "ea8d82a03cb9fdbbba0f7a5961f3816f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 47363,
            "upload_time": "2024-05-31T08:54:06",
            "upload_time_iso_8601": "2024-05-31T08:54:06.143458Z",
            "url": "https://files.pythonhosted.org/packages/f5/72/e2574d0f865879218cbc40a018c4935bb4475c5a8a14b96fd3de21092c5a/npstructures-0.2.19.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-05-31 08:54:06",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "knutdrand",
    "github_project": "npstructures",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "tox": true,
    "lcname": "npstructures"
}
        
Elapsed time: 0.74557s