# nsstools
This python tools has two methods that applies on nss_two_body_orbit [Gaia DR3](https://www.cosmos.esa.int/web/gaia/data-release-3) solutions
- covmat: for all kind of nss_solution_type, converts the correlation matrix+uncertainties to the covariance matrix of the solution
- campbell: for a NSS solution that is either astrometric Orbital* or AstroSpectroSB1, converts the Thiele-Innes orbital elements to the Campbell elements and propagates the uncertainties.
Ref: Halbwachs et al., 2022, Gaia Data Release 3. Astrometric binary star processing, Astronomy and Astrophysics, Appendix A
input: dataframe
output: dataframe
A R version is available [here]( https://gricad-gitlab.univ-grenoble-alpes.fr/ipag-public/gaia/nsstools).
## Installation
### with pip
pip3 install --user nsstools
### with setup
python3 setup.py install
## Usage
See the [notebook](https://gitlab.obspm.fr/gaia/nsstools/-/blob/main/nss.ipynb)
```python3
import pandas as pd
from nsstools import NssSource
nss = pd.read_csv("tests/data/nss_two_body_orbit_sample.csv.gz")
source_index = 0 # position of the source in the csv file
source = NssSource(nss, indice=source_index)
print(source.covmat())
print(source.campbell())
```
## Authors and acknowledgment
Authors: Nicolas Leclerc from a code by Jean-Louis Halbwachs and Carine Babusiaux.
Reference: Halbwachs et al., 2022, Gaia Data Release 3. Astrometric binary star processing, Astronomy and Astrophysics, Appendix A and B.
R version: https://gricad-gitlab.univ-grenoble-alpes.fr/ipag-public/gaia/nsstools
Raw data
{
"_id": null,
"home_page": "https://gitlab.obspm.fr/gaia/nsstools.git",
"name": "nsstools",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.5",
"maintainer_email": "",
"keywords": "",
"author": "Nicolas Leclerc, Carine Babusiaux, Jean-Louis Halbwachs",
"author_email": "gaia.project@obspm.fr",
"download_url": "https://files.pythonhosted.org/packages/8d/16/2ffc7c4bc782efec35b24ba97a4e52fb385d7bb003a1e5ed6ed9177556cd/nsstools-0.1.12.tar.gz",
"platform": null,
"description": "# nsstools\nThis python tools has two methods that applies on nss_two_body_orbit [Gaia DR3](https://www.cosmos.esa.int/web/gaia/data-release-3) solutions\n- covmat: for all kind of nss_solution_type, converts the correlation matrix+uncertainties to the covariance matrix of the solution\n- campbell: for a NSS solution that is either astrometric Orbital* or AstroSpectroSB1, converts the Thiele-Innes orbital elements to the Campbell elements and propagates the uncertainties.\n Ref: Halbwachs et al., 2022, Gaia Data Release 3. Astrometric binary star processing, Astronomy and Astrophysics, Appendix A\ninput: dataframe \noutput: dataframe\n\nA R version is available [here]( https://gricad-gitlab.univ-grenoble-alpes.fr/ipag-public/gaia/nsstools).\n\n## Installation\n\n### with pip\npip3 install --user nsstools\n\n### with setup\npython3 setup.py install\n\n## Usage\n\nSee the [notebook](https://gitlab.obspm.fr/gaia/nsstools/-/blob/main/nss.ipynb)\n\n```python3\nimport pandas as pd\nfrom nsstools import NssSource\n\nnss = pd.read_csv(\"tests/data/nss_two_body_orbit_sample.csv.gz\")\nsource_index = 0 # position of the source in the csv file\n\nsource = NssSource(nss, indice=source_index)\nprint(source.covmat())\nprint(source.campbell())\n\n```\n\n## Authors and acknowledgment\nAuthors: Nicolas Leclerc from a code by Jean-Louis Halbwachs and Carine Babusiaux.\nReference: Halbwachs et al., 2022, Gaia Data Release 3. Astrometric binary star processing, Astronomy and Astrophysics, Appendix A and B.\nR version: https://gricad-gitlab.univ-grenoble-alpes.fr/ipag-public/gaia/nsstools\n\n\n",
"bugtrack_url": null,
"license": "CeCILL-2.1",
"summary": "Tools for calculate campbell and covmat from Gaia CU4 sources",
"version": "0.1.12",
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "6648b2d48712fc84980002a26b27426303cb733ca054c2cc408c4ad2c83874ef",
"md5": "a1c32bc70d47432911917cdbee4bdf97",
"sha256": "4812384d299fa6da1326eaa92cf6d3a5f76a66de7a81db8810cc04624097da1d"
},
"downloads": -1,
"filename": "nsstools-0.1.12-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a1c32bc70d47432911917cdbee4bdf97",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.5",
"size": 5509,
"upload_time": "2023-01-31T13:41:49",
"upload_time_iso_8601": "2023-01-31T13:41:49.426474Z",
"url": "https://files.pythonhosted.org/packages/66/48/b2d48712fc84980002a26b27426303cb733ca054c2cc408c4ad2c83874ef/nsstools-0.1.12-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "8d162ffc7c4bc782efec35b24ba97a4e52fb385d7bb003a1e5ed6ed9177556cd",
"md5": "3146ebceddd1ce67e2a0f19f59b9d264",
"sha256": "47fd6372c856f65b5c4633fc7da89aa048092482867a3375442a4f66bb6f7858"
},
"downloads": -1,
"filename": "nsstools-0.1.12.tar.gz",
"has_sig": false,
"md5_digest": "3146ebceddd1ce67e2a0f19f59b9d264",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.5",
"size": 5298,
"upload_time": "2023-01-31T13:41:50",
"upload_time_iso_8601": "2023-01-31T13:41:50.557962Z",
"url": "https://files.pythonhosted.org/packages/8d/16/2ffc7c4bc782efec35b24ba97a4e52fb385d7bb003a1e5ed6ed9177556cd/nsstools-0.1.12.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-01-31 13:41:50",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "nsstools"
}