ntloss


Namentloss JSON
Version 0.0.3 PyPI version JSON
download
home_pageNone
SummaryNumber Token Loss - A regression-alike loss to improve numerical reasoning in language models
upload_time2025-08-08 17:13:28
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseMIT
keywords machine learning language models number token loss ai4math llm llm training reasoning models
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">


# `NTLoss` - a regression-like loss for LLMs


[![Paper](https://img.shields.io/badge/Paper-ICML-darkgreen.svg)](https://arxiv.org/abs/2411.02083)
[![Landing](https://img.shields.io/badge/GitHub-Pages-blue.svg)](https://tum-ai.github.io/number-token-loss/)
[![Demo](https://img.shields.io/badge/🤗-Demo-yellow.svg)](https://huggingface.co/spaces/jannisborn/NumberTokenLoss)
[![CI](https://github.com/AI4SD/number-token-loss/actions/workflows/ci.yaml/badge.svg)](https://github.com/AI4SD/number-token-loss/actions/workflows/ci.yaml)
[![License](https://img.shields.io/badge/License-MIT-green.svg)](LICENSE)
[![PyPI](https://badge.fury.io/py/ntloss.svg)](https://badge.fury.io/py/ntloss)
[![Downloads](https://static.pepy.tech/badge/ntloss)](https://pepy.tech/project/ntloss)

*`ntloss` is a PyPI package of the "Number Token Loss" for language models. A regression-like loss that improves LLM performance on math tasks. Follows [Regress, Don't Guess, ICML 2025](https://arxiv.org/abs/2411.02083)*


</div>

---

## 📖 Overview
This repo maintains the code for the `ntloss` [PyPI package](https://pypi.org/project/ntloss/)

- 📄 **Paper source code**: [Regress, Don't Guess – A Regression-like Loss on Number Tokens for Language Models](https://github.com/tum-ai/number-token-loss)

- 📄 **Paper**: [Regress, Don't Guess – A Regression-like Loss on Number Tokens for Language Models](https://arxiv.org/abs/2411.02083)
- 🌐 **Project Page**: [https://tum-ai.github.io/number-token-loss/](https://tum-ai.github.io/number-token-loss/)
- 🎮 **Interactive Demo**: [https://huggingface.co/spaces/jannisborn/NumberTokenLoss](https://huggingface.co/spaces/jannisborn/NumberTokenLoss)

## 🏃‍♂️ Quick Start


Simply install `ntloss` into your existing project
```sh
uv add ntloss
pip install ntloss # if you are oldschool
```

Use like this:
```py
from ntloss import NTLoss as NTL
ntl = NTL(tokenizer=tokenizer)
loss = ntl(logits, labels)
```

NOTE: `ntloss` is currently in alpha phase and pre-release. Feedback & PRs are very welcome.


## 📝 Citation

If you use `ntloss`, please cite our paper:

```bibtex
@inproceedings{zausinger2025regress,
  title   = {Regress, Don't Guess – A Regression-like Loss on Number Tokens for Language Models},
  author  = {Jonas Zausinger and Lars Pennig and Anamarija Kozina and Sean Sdahl
             and Julian Sikora and Adrian Dendorfer and Timofey Kuznetsov
             and Mohamad Hagog and Nina Wiedemann and Kacper Chlodny
             and Vincent Limbach and Anna Ketteler and Thorben Prein
             and Vishwa Mohan Singh and Michael Danziger and Jannis Born},
  booktitle = {Proc. of the 42nd International Conference on Machine Learning (ICML)},
  year    = {2025},
  url     = {https://tum-ai.github.io/number-token-loss/}
}
```

## 📄 License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "ntloss",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "Machine Learning, Language Models, Number Token Loss, AI4Math, LLM, LLM Training, Reasoning models",
    "author": null,
    "author_email": "Jannis Born <jab@zurich.ibm.com>, Lars Pennig <lpennig@t-online.de>, Jonas Zausinger <jonas.zausinger@tum.de>, Sarah de Ruiter <Sarah.Louise.De.Ruiter@ibm.com>",
    "download_url": "https://files.pythonhosted.org/packages/b6/03/3bf3fd85bb5a374cfccb7bbfcd8477d10e00a928b3e09427de143ab2c5c4/ntloss-0.0.3.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n\n\n# `NTLoss` - a regression-like loss for LLMs\n\n\n[![Paper](https://img.shields.io/badge/Paper-ICML-darkgreen.svg)](https://arxiv.org/abs/2411.02083)\n[![Landing](https://img.shields.io/badge/GitHub-Pages-blue.svg)](https://tum-ai.github.io/number-token-loss/)\n[![Demo](https://img.shields.io/badge/\ud83e\udd17-Demo-yellow.svg)](https://huggingface.co/spaces/jannisborn/NumberTokenLoss)\n[![CI](https://github.com/AI4SD/number-token-loss/actions/workflows/ci.yaml/badge.svg)](https://github.com/AI4SD/number-token-loss/actions/workflows/ci.yaml)\n[![License](https://img.shields.io/badge/License-MIT-green.svg)](LICENSE)\n[![PyPI](https://badge.fury.io/py/ntloss.svg)](https://badge.fury.io/py/ntloss)\n[![Downloads](https://static.pepy.tech/badge/ntloss)](https://pepy.tech/project/ntloss)\n\n*`ntloss` is a PyPI package of the \"Number Token Loss\" for language models. A regression-like loss that improves LLM performance on math tasks. Follows [Regress, Don't Guess, ICML 2025](https://arxiv.org/abs/2411.02083)*\n\n\n</div>\n\n---\n\n## \ud83d\udcd6 Overview\nThis repo maintains the code for the `ntloss` [PyPI package](https://pypi.org/project/ntloss/)\n\n- \ud83d\udcc4 **Paper source code**: [Regress, Don't Guess \u2013 A Regression-like Loss on Number Tokens for Language Models](https://github.com/tum-ai/number-token-loss)\n\n- \ud83d\udcc4 **Paper**: [Regress, Don't Guess \u2013 A Regression-like Loss on Number Tokens for Language Models](https://arxiv.org/abs/2411.02083)\n- \ud83c\udf10 **Project Page**: [https://tum-ai.github.io/number-token-loss/](https://tum-ai.github.io/number-token-loss/)\n- \ud83c\udfae **Interactive Demo**: [https://huggingface.co/spaces/jannisborn/NumberTokenLoss](https://huggingface.co/spaces/jannisborn/NumberTokenLoss)\n\n## \ud83c\udfc3\u200d\u2642\ufe0f Quick Start\n\n\nSimply install `ntloss` into your existing project\n```sh\nuv add ntloss\npip install ntloss # if you are oldschool\n```\n\nUse like this:\n```py\nfrom ntloss import NTLoss as NTL\nntl = NTL(tokenizer=tokenizer)\nloss = ntl(logits, labels)\n```\n\nNOTE: `ntloss` is currently in alpha phase and pre-release. Feedback & PRs are very welcome.\n\n\n## \ud83d\udcdd Citation\n\nIf you use `ntloss`, please cite our paper:\n\n```bibtex\n@inproceedings{zausinger2025regress,\n  title   = {Regress, Don't Guess \u2013 A Regression-like Loss on Number Tokens for Language Models},\n  author  = {Jonas Zausinger and Lars Pennig and Anamarija Kozina and Sean Sdahl\n             and Julian Sikora and Adrian Dendorfer and Timofey Kuznetsov\n             and Mohamad Hagog and Nina Wiedemann and Kacper Chlodny\n             and Vincent Limbach and Anna Ketteler and Thorben Prein\n             and Vishwa Mohan Singh and Michael Danziger and Jannis Born},\n  booktitle = {Proc. of the 42nd International Conference on Machine Learning (ICML)},\n  year    = {2025},\n  url     = {https://tum-ai.github.io/number-token-loss/}\n}\n```\n\n## \ud83d\udcc4 License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Number Token Loss - A regression-alike loss to improve numerical reasoning in language models",
    "version": "0.0.3",
    "project_urls": {
        "Bug Tracker": "https://github.com/AI4SD/number-token-loss/issues",
        "Demo": "https://huggingface.co/spaces/jannisborn/NumberTokenLoss",
        "Landing Page": "https://tum-ai.github.io/number-token-loss/",
        "Paper": "https://arxiv.org/abs/2411.02083",
        "Source code": "https://github.com/AI4SD/number-token-loss"
    },
    "split_keywords": [
        "machine learning",
        " language models",
        " number token loss",
        " ai4math",
        " llm",
        " llm training",
        " reasoning models"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "93c59323e686a45bdad802a5ea6ba583021531cefbdc68805494e0b7f1d596d5",
                "md5": "10b8ee02485b5449c5401c3952c77c14",
                "sha256": "7fa2a23ade0c934e5ad63e766333e809f92b8e7f2d284eb1ddcf5a09567a8d4d"
            },
            "downloads": -1,
            "filename": "ntloss-0.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "10b8ee02485b5449c5401c3952c77c14",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 6516,
            "upload_time": "2025-08-08T17:13:27",
            "upload_time_iso_8601": "2025-08-08T17:13:27.333155Z",
            "url": "https://files.pythonhosted.org/packages/93/c5/9323e686a45bdad802a5ea6ba583021531cefbdc68805494e0b7f1d596d5/ntloss-0.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b6033bf3fd85bb5a374cfccb7bbfcd8477d10e00a928b3e09427de143ab2c5c4",
                "md5": "020377827bbf1d6c27aa4acb9f378f2d",
                "sha256": "f2be4a22fbc87848da2d0710499b02fe3e10b9e5f857edcf9a14f38b26475e70"
            },
            "downloads": -1,
            "filename": "ntloss-0.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "020377827bbf1d6c27aa4acb9f378f2d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 8088,
            "upload_time": "2025-08-08T17:13:28",
            "upload_time_iso_8601": "2025-08-08T17:13:28.281443Z",
            "url": "https://files.pythonhosted.org/packages/b6/03/3bf3fd85bb5a374cfccb7bbfcd8477d10e00a928b3e09427de143ab2c5c4/ntloss-0.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-08 17:13:28",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "AI4SD",
    "github_project": "number-token-loss",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "ntloss"
}
        
Elapsed time: 0.67891s