# NTT AI Observability Exporter
A specialized telemetry exporter for NTT AI Foundry projects using Azure Monitor OpenTelemetry. This package simplifies telemetry setup for AI applications built with Azure services.
## Features
- Automatic instrumentation of Azure SDK libraries
- Simplified configuration for Azure Monitor OpenTelemetry
- Specialized support for Semantic Kernel telemetry
- Compatible with Azure AI Foundry projects
## Installation
```bash
# Using pip
pip install ntt-ai-observability-exporter
# Using uv
uv pip install ntt-ai-observability-exporter
```
## Updating Your Package Documentation
Make sure to add a note in your package documentation (such as README.md) about the dependencies:
```markdown
## Dependencies
This package depends on:
- azure-monitor-opentelemetry (>=1.0.0)
- opentelemetry-sdk (>=1.15.0)
These dependencies will be automatically installed when you install the package via pip.
```bash
# Using pip
pip install ntt-ai-observability-exporter
# Using uv
uv pip install ntt-ai-observability-exporter
```
## Usage
### Simple Usage - One Line Setup
```python
from ntt_ai_observability_exporter import configure_telemetry
# That's it! This single line configures all telemetry
configure_telemetry()
# Now you can use your AI components normally - telemetry is automatic
```
### Configuration Options
```python
# Explicit configuration
configure_telemetry(
connection_string="InstrumentationKey=your-key;IngestionEndpoint=your-endpoint",
customer_name="your-customer",
agent_name="your-agent"
)
```
## What Gets Instrumented Automatically
The Azure Monitor OpenTelemetry package automatically instruments:
- **Azure SDK libraries** (including azure.ai.openai)
- **HTTP client libraries** (requests, aiohttp)
This means when you use Azure AI Foundry components, telemetry is captured without any additional code.
## Configuration Parameters
- `connection_string`: Azure Monitor connection string
- `customer_name`: Maps to `service.name` in OpenTelemetry resource
- `agent_name`: Maps to `service.instance.id` in OpenTelemetry resource
## Environment Variables
You can set these environment variables:
- `AZURE_MONITOR_CONNECTION_STRING`: The connection string for Azure Monitor
- `CUSTOMER_NAME`: Maps to `service.name` in OpenTelemetry resource
- `AGENT_NAME`: Maps to `service.instance.id` in OpenTelemetry resource
## Telemetry Types Captured
The configuration captures:
- **Traces**: Request flows and operations
- **Metrics**: Performance measurements
- **Logs**: When integrated with Python logging
## Example in Azure AI Foundry Project
```python
# Import the NTT AI Observability Exporter
from ntt_ai_observability_exporter import configure_telemetry
# Configure telemetry with your project details
configure_telemetry(
connection_string="InstrumentationKey=xxx;IngestionEndpoint=https://westeurope-5.in.applicationinsights.azure.com/",
customer_name="customer-name-foundry",
agent_name="ai-foundry-agent"
)
# Now use Azure AI components as normal - telemetry is automatic
from azure.ai.assistant import AssistantClient
client = AssistantClient(...)
# All operations are automatically instrumented
```
## Semantic Kernel Telemetry Support
For applications using Semantic Kernel, use the specialized configuration function:
```python
from ntt_ai_observability_exporter import configure_semantic_kernel_telemetry
# Configure Semantic Kernel telemetry BEFORE creating any Kernel instances
configure_semantic_kernel_telemetry(
connection_string="your_connection_string",
customer_name="your_customer_name",
agent_name="your_agent_name"
)
# Then create and use your Semantic Kernel
from semantic_kernel import Kernel
kernel = Kernel()
# ... rest of your code
```
Raw data
{
"_id": null,
"home_page": null,
"name": "ntt-ai-observability-exporter",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "ntt, azure, telemetry, opentelemetry, monitoring, ai, observability",
"author": null,
"author_email": "Anand Vaibhav Singh <anandvaibhav-singh_nttltd@example.com>",
"download_url": "https://files.pythonhosted.org/packages/1c/6b/8ce2475bd5a49b1118ed0d4db02b5f31c2334507ff93b350a95bf0e4ecac/ntt_ai_observability_exporter-0.1.4.tar.gz",
"platform": null,
"description": "# NTT AI Observability Exporter\r\n\r\nA specialized telemetry exporter for NTT AI Foundry projects using Azure Monitor OpenTelemetry. This package simplifies telemetry setup for AI applications built with Azure services.\r\n\r\n## Features\r\n\r\n- Automatic instrumentation of Azure SDK libraries\r\n- Simplified configuration for Azure Monitor OpenTelemetry\r\n- Specialized support for Semantic Kernel telemetry\r\n- Compatible with Azure AI Foundry projects\r\n\r\n## Installation\r\n\r\n```bash\r\n# Using pip\r\npip install ntt-ai-observability-exporter\r\n\r\n# Using uv\r\nuv pip install ntt-ai-observability-exporter\r\n```\r\n## Updating Your Package Documentation\r\n\r\nMake sure to add a note in your package documentation (such as README.md) about the dependencies:\r\n\r\n```markdown\r\n## Dependencies\r\n\r\nThis package depends on:\r\n- azure-monitor-opentelemetry (>=1.0.0)\r\n- opentelemetry-sdk (>=1.15.0)\r\n\r\nThese dependencies will be automatically installed when you install the package via pip.\r\n\r\n```bash\r\n# Using pip\r\npip install ntt-ai-observability-exporter\r\n\r\n# Using uv\r\nuv pip install ntt-ai-observability-exporter\r\n```\r\n\r\n## Usage\r\n\r\n### Simple Usage - One Line Setup\r\n\r\n```python\r\nfrom ntt_ai_observability_exporter import configure_telemetry\r\n\r\n# That's it! This single line configures all telemetry\r\nconfigure_telemetry()\r\n\r\n# Now you can use your AI components normally - telemetry is automatic\r\n```\r\n\r\n### Configuration Options\r\n\r\n```python\r\n# Explicit configuration\r\nconfigure_telemetry(\r\n connection_string=\"InstrumentationKey=your-key;IngestionEndpoint=your-endpoint\",\r\n customer_name=\"your-customer\",\r\n agent_name=\"your-agent\"\r\n)\r\n\r\n```\r\n\r\n## What Gets Instrumented Automatically\r\n\r\nThe Azure Monitor OpenTelemetry package automatically instruments:\r\n\r\n- **Azure SDK libraries** (including azure.ai.openai)\r\n- **HTTP client libraries** (requests, aiohttp)\r\n\r\nThis means when you use Azure AI Foundry components, telemetry is captured without any additional code.\r\n\r\n## Configuration Parameters\r\n\r\n- `connection_string`: Azure Monitor connection string\r\n- `customer_name`: Maps to `service.name` in OpenTelemetry resource\r\n- `agent_name`: Maps to `service.instance.id` in OpenTelemetry resource\r\n\r\n## Environment Variables\r\n\r\nYou can set these environment variables:\r\n\r\n- `AZURE_MONITOR_CONNECTION_STRING`: The connection string for Azure Monitor\r\n- `CUSTOMER_NAME`: Maps to `service.name` in OpenTelemetry resource\r\n- `AGENT_NAME`: Maps to `service.instance.id` in OpenTelemetry resource\r\n\r\n\r\n\r\n## Telemetry Types Captured\r\n\r\nThe configuration captures:\r\n\r\n- **Traces**: Request flows and operations\r\n- **Metrics**: Performance measurements \r\n- **Logs**: When integrated with Python logging\r\n\r\n## Example in Azure AI Foundry Project\r\n\r\n```python\r\n# Import the NTT AI Observability Exporter\r\nfrom ntt_ai_observability_exporter import configure_telemetry\r\n\r\n# Configure telemetry with your project details\r\nconfigure_telemetry(\r\n connection_string=\"InstrumentationKey=xxx;IngestionEndpoint=https://westeurope-5.in.applicationinsights.azure.com/\",\r\n customer_name=\"customer-name-foundry\",\r\n agent_name=\"ai-foundry-agent\"\r\n)\r\n\r\n# Now use Azure AI components as normal - telemetry is automatic\r\nfrom azure.ai.assistant import AssistantClient\r\n\r\nclient = AssistantClient(...)\r\n# All operations are automatically instrumented\r\n```\r\n\r\n\r\n## Semantic Kernel Telemetry Support\r\n\r\nFor applications using Semantic Kernel, use the specialized configuration function:\r\n\r\n```python\r\nfrom ntt_ai_observability_exporter import configure_semantic_kernel_telemetry\r\n\r\n# Configure Semantic Kernel telemetry BEFORE creating any Kernel instances\r\nconfigure_semantic_kernel_telemetry(\r\n connection_string=\"your_connection_string\",\r\n customer_name=\"your_customer_name\",\r\n agent_name=\"your_agent_name\"\r\n)\r\n\r\n# Then create and use your Semantic Kernel\r\nfrom semantic_kernel import Kernel\r\nkernel = Kernel()\r\n# ... rest of your code\r\n```\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "NTT AI Observability Exporter for Azure Monitor OpenTelemetry in AI Foundry projects",
"version": "0.1.4",
"project_urls": {
"Bug Tracker": "https://github.com/nttlimited/ntt-ai-observability-exporter/issues",
"Homepage": "https://github.com/nttlimited/ntt-ai-observability-exporter"
},
"split_keywords": [
"ntt",
" azure",
" telemetry",
" opentelemetry",
" monitoring",
" ai",
" observability"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "6d7a2b81e32ca367e503abd9418fae67405c504771749a2d44c8d0ffcc8f7457",
"md5": "eb28433079ea577556ad48dc9e88d22c",
"sha256": "8791927ba5061b1e1227ab939b2e09616cfa62c39be5cac2ad187ffcf1a3a62e"
},
"downloads": -1,
"filename": "ntt_ai_observability_exporter-0.1.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "eb28433079ea577556ad48dc9e88d22c",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 7769572,
"upload_time": "2025-08-19T16:22:51",
"upload_time_iso_8601": "2025-08-19T16:22:51.982177Z",
"url": "https://files.pythonhosted.org/packages/6d/7a/2b81e32ca367e503abd9418fae67405c504771749a2d44c8d0ffcc8f7457/ntt_ai_observability_exporter-0.1.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "1c6b8ce2475bd5a49b1118ed0d4db02b5f31c2334507ff93b350a95bf0e4ecac",
"md5": "b2091a8bfcdb684e7bc2520737c8b690",
"sha256": "bd1a305328555ec0ebb50e68eb19a300a389c8b855b7a914f0e9ec16080b697e"
},
"downloads": -1,
"filename": "ntt_ai_observability_exporter-0.1.4.tar.gz",
"has_sig": false,
"md5_digest": "b2091a8bfcdb684e7bc2520737c8b690",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 6130072,
"upload_time": "2025-08-19T16:22:56",
"upload_time_iso_8601": "2025-08-19T16:22:56.376942Z",
"url": "https://files.pythonhosted.org/packages/1c/6b/8ce2475bd5a49b1118ed0d4db02b5f31c2334507ff93b350a95bf0e4ecac/ntt_ai_observability_exporter-0.1.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-19 16:22:56",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "nttlimited",
"github_project": "ntt-ai-observability-exporter",
"github_not_found": true,
"lcname": "ntt-ai-observability-exporter"
}