ntwrk


Namentwrk JSON
Version 1.0.1 PyPI version JSON
download
home_pagehttps://pypi.org/project/ntwrk/
SummarySophisticate Graph
upload_time2024-10-23 17:03:27
maintainerNone
docs_urlNone
authorkhiat Mohammed Abderrezzak
requires_python>=3.6
licenseMIT
keywords graph
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ntwrk


[![PyPI version](https://badge.fury.io/py/ntwrk.svg)](https://badge.fury.io/py/ntwrk)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)


This library was created to simplify the concept of graphs by visualizing them in a perfect and clear way, especially for beginners in data structures.


## Installation


You can install `ntwrk` via pip:


```bash
pip install ntwrk
```


## Usage 


### For undirected unweighted graph


```python
from ntwrk import graph


vertices = ["n", "e", "t", "w", "o", "r", "k"]
edges = ["ne", "nt", "nw", "no", "nk", "et", "eo", "er", "tw", "tk", "wo", "wr", "or", "ok", "rk"]


g = graph(vertices, edges)
print(g)
```


#### Output


```bash
Vertices : {'n', 'e', 't', 'w', 'o', 'r', 'k'}
Edges : {'ne', 'nt', 'nw', 'no', 'nk', 'et', 'eo', 'er', 'tw', 'tk', 'wo', 'wr', 'or', 'ok', 'rk'}
```


#### You can show all details (adjacency matrix, adjacency list)


```python
from ntwrk import graph


vertices = ["n", "e", "t", "w", "o", "r", "k"]
edges = ["ne", "nt", "nw", "no", "nk", "et", "eo", "er", "tw", "tk", "wo", "wr", "or", "ok", "rk"]


g = graph(vertices, edges, detail=True)
print(g)
```


#### Output


```bash
Adjacency matrix :
----------------

╒═════════╤═════╤═════╤═════╤═════╤═════╤═════╤═════╕
│ Nodes   │   n │   e │   t │   w │   o │   r │   k │
╞═════════╪═════╪═════╪═════╪═════╪═════╪═════╪═════╡
│ n       │   0 │   1 │   1 │   1 │   1 │   0 │   1 │
├─────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
│ e       │   1 │   0 │   1 │   0 │   1 │   1 │   0 │
├─────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
│ t       │   1 │   1 │   0 │   1 │   0 │   0 │   1 │
├─────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
│ w       │   1 │   0 │   1 │   0 │   1 │   1 │   0 │
├─────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
│ o       │   1 │   1 │   0 │   1 │   0 │   1 │   1 │
├─────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
│ r       │   0 │   1 │   0 │   1 │   1 │   0 │   1 │
├─────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
│ k       │   1 │   0 │   1 │   0 │   1 │   1 │   0 │
╘═════════╧═════╧═════╧═════╧═════╧═════╧═════╧═════╛

Adjacency list :
--------------

╒═════════╤══════════════════╕
│ Nodes   │ Adjacent Nodes   │
╞═════════╪══════════════════╡
│ n       │ ╒═══╕            │
│         │ │ e │            │
│         │ ├───┤            │
│         │ │ t │            │
│         │ ├───┤            │
│         │ │ w │            │
│         │ ├───┤            │
│         │ │ o │            │
│         │ ├───┤            │
│         │ │ k │            │
│         │ ╘═══╛            │
├─────────┼──────────────────┤
│ e       │ ╒═══╕            │
│         │ │ n │            │
│         │ ├───┤            │
│         │ │ t │            │
│         │ ├───┤            │
│         │ │ o │            │
│         │ ├───┤            │
│         │ │ r │            │
│         │ ╘═══╛            │
├─────────┼──────────────────┤
│ t       │ ╒═══╕            │
│         │ │ n │            │
│         │ ├───┤            │
│         │ │ e │            │
│         │ ├───┤            │
│         │ │ w │            │
│         │ ├───┤            │
│         │ │ k │            │
│         │ ╘═══╛            │
├─────────┼──────────────────┤
│ w       │ ╒═══╕            │
│         │ │ n │            │
│         │ ├───┤            │
│         │ │ t │            │
│         │ ├───┤            │
│         │ │ o │            │
│         │ ├───┤            │
│         │ │ r │            │
│         │ ╘═══╛            │
├─────────┼──────────────────┤
│ o       │ ╒═══╕            │
│         │ │ n │            │
│         │ ├───┤            │
│         │ │ e │            │
│         │ ├───┤            │
│         │ │ w │            │
│         │ ├───┤            │
│         │ │ r │            │
│         │ ├───┤            │
│         │ │ k │            │
│         │ ╘═══╛            │
├─────────┼──────────────────┤
│ r       │ ╒═══╕            │
│         │ │ e │            │
│         │ ├───┤            │
│         │ │ w │            │
│         │ ├───┤            │
│         │ │ o │            │
│         │ ├───┤            │
│         │ │ k │            │
│         │ ╘═══╛            │
├─────────┼──────────────────┤
│ k       │ ╒═══╕            │
│         │ │ n │            │
│         │ ├───┤            │
│         │ │ t │            │
│         │ ├───┤            │
│         │ │ o │            │
│         │ ├───┤            │
│         │ │ r │            │
│         │ ╘═══╛            │
╘═════════╧══════════════════╛
```


#### You can add nodes with edges


```python
from ntwrk import graph


vertices = ["n", "e", "t", "w", "o", "r", "k"]
edges = ["ne", "nt", "nw", "no", "nk", "et", "eo", "er", "tw", "tk", "wo", "wr", "or", "ok", "rk"]


g = graph(vertices, edges)
print(g)
g.add("x", edge="kx")
print(g)
```


#### Output


```bash
Vertices : {'n', 'e', 't', 'w', 'o', 'r', 'k'}
Edges : {'ne', 'nt', 'nw', 'no', 'nk', 'et', 'eo', 'er', 'tw', 'tk', 'wo', 'wr', 'or', 'ok', 'rk'}
Vertices : {'n', 'e', 't', 'w', 'o', 'r', 'k', 'x'}
Edges : {'ne', 'nt', 'nw', 'no', 'nk', 'et', 'eo', 'er', 'tw', 'tk', 'wo', 'wr', 'or', 'ok', 'rk', 'kx'}
```


#### You can add nodes and edges


```python
from ntwrk import graph


vertices = ["n", "e", "t", "w", "o", "r", "k"]
edges = ["ne", "nt", "nw", "no", "nk", "et", "eo", "er", "tw", "tk", "wo", "wr", "or", "ok", "rk"]


g = graph(vertices, edges)
print(g)
g.add("x")
g.add_edge(node1="k", node2="x")
print(g)
```


#### Output


```bash
Vertices : {'n', 'e', 't', 'w', 'o', 'r', 'k'}
Edges : {'ne', 'nt', 'nw', 'no', 'nk', 'et', 'eo', 'er', 'tw', 'tk', 'wo', 'wr', 'or', 'ok', 'rk'}
Vertices : {'n', 'e', 't', 'w', 'o', 'r', 'k', 'x'}
Edges : {'ne', 'nt', 'nw', 'no', 'nk', 'et', 'eo', 'er', 'tw', 'tk', 'wo', 'wr', 'or', 'ok', 'rk', 'kx'}
```


#### You can delete nodes


```python
from ntwrk import graph


vertices = ["n", "e", "t", "w", "o", "r", "k", "x"]
edges = ["ne", "nt", "nw", "no", "nk", "et", "eo", "er", "tw", "tk", "wo", "wr", "or", "ok", "rk", "kx"]


g = graph(vertices, edges)
print(g)
g.delete_node("x")
print(g)
```


#### Output


```bash
Vertices : {'n', 'e', 't', 'w', 'o', 'r', 'k', 'x'}
Edges : {'ne', 'nt', 'nw', 'no', 'nk', 'et', 'eo', 'er', 'tw', 'tk', 'wo', 'wr', 'or', 'ok', 'rk', 'kx'}
Vertices : {'n', 'e', 't', 'w', 'o', 'r', 'k'}
Edges : {'ne', 'nt', 'nw', 'no', 'nk', 'et', 'eo', 'er', 'tw', 'tk', 'wo', 'wr', 'or', 'ok', 'rk'}
```


#### You can delete edges


```python
from ntwrk import graph


vertices = ["n", "e", "t", "w", "o", "r", "k", "x"]
edges = ["ne", "nt", "nw", "no", "nk", "et", "eo", "er", "tw", "tk", "wo", "wr", "or", "ok", "rk", "kx"]


g = graph(vertices, edges)
print(g)
g.delete_edge("k", "x")
print(g)
```


#### Output


```bash
Vertices : {'n', 'e', 't', 'w', 'o', 'r', 'k', 'x'}
Edges : {'ne', 'nt', 'nw', 'no', 'nk', 'et', 'eo', 'er', 'tw', 'tk', 'wo', 'wr', 'or', 'ok', 'rk', 'kx'}
Vertices : {'n', 'e', 't', 'w', 'o', 'r', 'k', 'x'}
Edges : {'ne', 'nt', 'nw', 'no', 'nk', 'et', 'eo', 'er', 'tw', 'tk', 'wo', 'wr', 'or', 'ok', 'rk'}
```


#### You can show how many nodes are in the graph


```python
from ntwrk import graph


vertices = ["n", "e", "t", "w", "o", "r", "k"]
edges = ["ne", "nt", "nw", "no", "nk", "et", "eo", "er", "tw", "tk", "wo", "wr", "or", "ok", "rk"]


g = graph(vertices, edges)
print(len(g))
```


#### Output


```bash
7
```


#### You can show how many edges are in the graph


```python
from ntwrk import graph


vertices = ["n", "e", "t", "w", "o", "r", "k"]
edges = ["ne", "nt", "nw", "no", "nk", "et", "eo", "er", "tw", "tk", "wo", "wr", "or", "ok", "rk"]


g = graph(vertices, edges)
print(g.edge_count())
```


#### Output


```bash
15
```


#### You can show how many degrees are in the graph


```python
from ntwrk import graph


vertices = ["n", "e", "t", "w", "o", "r", "k"]
edges = ["ne", "nt", "nw", "no", "nk", "et", "eo", "er", "tw", "tk", "wo", "wr", "or", "ok", "rk"]


g = graph(vertices, edges)
print(g.degree_count())
```


#### Output


```bash
30
```


#### You can show the node degree  


```python
from ntwrk import graph


vertices = ["n", "e", "t", "w", "o", "r", "k"]
edges = ["ne", "nt", "nw", "no", "nk", "et", "eo", "er", "tw", "tk", "wo", "wr", "or", "ok", "rk"]


g = graph(vertices, edges)
print(g.get_degree("n"))
```


#### Output


```bash
5
```


#### You can traverse the graph using different algorithms (DFS, BFS)


```python
from ntwrk import graph


vertices = ["n", "e", "t", "w", "o", "r", "k"]
edges = ["ne", "nt", "nw", "no", "nk", "et", "eo", "er", "tw", "tk", "wo", "wr", "or", "ok", "rk"]


g = graph(vertices, edges)
print(g.traverse("n"))
print(g.traverse("n", algorithm="dfs"))
print(g.traverse("n", algorithm="bfs"))
```


#### Output


```bash
['n', 'e', 't', 'w', 'o', 'r', 'k']
['n', 'k', 'r', 'o', 'w', 't', 'e']
['n', 'e', 't', 'w', 'o', 'k', 'r']
```


#### You can find the path between two nodes


```python
from ntwrk import graph


vertices = ["n", "e", "t", "w", "o", "r", "k"]
edges = ["ne", "nt", "nw", "no", "nk", "et", "eo", "er", "tw", "tk", "wo", "wr", "or", "ok", "rk"]


g = graph(vertices, edges)
print(g.find_path("n", "k"))
```


#### Output


```bash
['n', 'e', 't', 'w', 'o', 'r', 'k']
```


#### You can check whether the graph is connected or disconnected 


```python
from ntwrk import graph


vertices = ["n", "e", "t", "w", "o", "r", "k"]
edges = ["ne", "nt", "nw", "no", "nk", "et", "eo", "er", "tw", "tk", "wo", "wr", "or", "ok", "rk"]


g = graph(vertices, edges)
print(g.isConnected())
print(g.isDisconnected())
```


#### Output


```bash
True
False
```


#### You can create a complete graph


```python
from ntwrk import graph


vertices = ["n", "e", "t", "w", "o", "r", "k"]


g = graph(vertices, complete=True)
print(g)
```


#### Output


```bash
Vertices : {'n', 'e', 't', 'w', 'o', 'r', 'k'}
Edges : {'ne', 'nt', 'nw', 'no', 'nr', 'nk', 'et', 'ew', 'eo', 'er', 'ek', 'tw', 'to', 'tr', 'tk', 'wo', 'wr', 'wk', 'or', 'ok', 'rk'}
```


### For undirected weighted graph


```python
from ntwrk import graph


vertices = ["n", "e", "t", "w", "o", "r", "k"]
edges = [("ne", 9), ("nt", 6), ("nw", 9), ("no", 1), ("nk", 3), ("et", 15), ("eo", 10), ("er", 13), ("tw", 3), ("tk", 9), ("wo", 8), ("wr", 5), ("or", 3), ("ok", 4), ("rk", 7)]


g = graph(vertices, edges, weighted=True)
print(g)
```


#### Output


```bash
Vertices : {'n', 'e', 't', 'w', 'o', 'r', 'k'}
Edges : {['ne', 9], ['nt', 6], ['nw', 9], ['no', 1], ['nk', 3], ['et', 15], ['eo', 10], ['er', 13], ['tw', 3], ['tk', 9], ['wo', 8], ['wr', 5], ['or', 3], ['ok', 4], ['rk', 7]}
```


#### You can show all details (adjacency matrix, adjacency list)


```python
from ntwrk import graph


vertices = ["n", "e", "t", "w", "o", "r", "k"]
edges = [("ne", 9), ("nt", 6), ("nw", 9), ("no", 1), ("nk", 3), ("et", 15), ("eo", 10), ("er", 13), ("tw", 3), ("tk", 9), ("wo", 8), ("wr", 5), ("or", 3), ("ok", 4), ("rk", 7)]


g = graph(vertices, edges, weighted=True, detail=True)
print(g)
```


#### Output


```bash
Adjacency matrix :
----------------

╒═════════╤═════╤═════╤═════╤═════╤═════╤═════╤═════╕
│ Nodes   │   n │   e │   t │   w │   o │   r │   k │
╞═════════╪═════╪═════╪═════╪═════╪═════╪═════╪═════╡
│ n       │   0 │   9 │   6 │   9 │   1 │   0 │   3 │
├─────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
│ e       │   9 │   0 │  15 │   0 │  10 │  13 │   0 │
├─────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
│ t       │   6 │  15 │   0 │   3 │   0 │   0 │   9 │
├─────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
│ w       │   9 │   0 │   3 │   0 │   8 │   5 │   0 │
├─────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
│ o       │   1 │  10 │   0 │   8 │   0 │   3 │   4 │
├─────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
│ r       │   0 │  13 │   0 │   5 │   3 │   0 │   7 │
├─────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
│ k       │   3 │   0 │   9 │   0 │   4 │   7 │   0 │
╘═════════╧═════╧═════╧═════╧═════╧═════╧═════╧═════╛

Adjacency list :
--------------

╒═════════╤════════════════════════════════╕
│ Nodes   │ ╒════════════════╤═════════╕   │
│         │ │ Adjacent Nodes │ Weights │   │
│         │ ╘════════════════╧═════════╛   │
╞═════════╪════════════════════════════════╡
│ n       │ ╒═══╤═══╕                      │
│         │ │ e │ 9 │                      │
│         │ ├───┼───┤                      │
│         │ │ t │ 6 │                      │
│         │ ├───┼───┤                      │
│         │ │ w │ 9 │                      │
│         │ ├───┼───┤                      │
│         │ │ o │ 1 │                      │
│         │ ├───┼───┤                      │
│         │ │ k │ 3 │                      │
│         │ ╘═══╧═══╛                      │
├─────────┼────────────────────────────────┤
│ e       │ ╒═══╤════╕                     │
│         │ │ n │  9 │                     │
│         │ ├───┼────┤                     │
│         │ │ t │ 15 │                     │
│         │ ├───┼────┤                     │
│         │ │ o │ 10 │                     │
│         │ ├───┼────┤                     │
│         │ │ r │ 13 │                     │
│         │ ╘═══╧════╛                     │
├─────────┼────────────────────────────────┤
│ t       │ ╒═══╤════╕                     │
│         │ │ n │  6 │                     │
│         │ ├───┼────┤                     │
│         │ │ e │ 15 │                     │
│         │ ├───┼────┤                     │
│         │ │ w │  3 │                     │
│         │ ├───┼────┤                     │
│         │ │ k │  9 │                     │
│         │ ╘═══╧════╛                     │
├─────────┼────────────────────────────────┤
│ w       │ ╒═══╤═══╕                      │
│         │ │ n │ 9 │                      │
│         │ ├───┼───┤                      │
│         │ │ t │ 3 │                      │
│         │ ├───┼───┤                      │
│         │ │ o │ 8 │                      │
│         │ ├───┼───┤                      │
│         │ │ r │ 5 │                      │
│         │ ╘═══╧═══╛                      │
├─────────┼────────────────────────────────┤
│ o       │ ╒═══╤════╕                     │
│         │ │ n │  1 │                     │
│         │ ├───┼────┤                     │
│         │ │ e │ 10 │                     │
│         │ ├───┼────┤                     │
│         │ │ w │  8 │                     │
│         │ ├───┼────┤                     │
│         │ │ r │  3 │                     │
│         │ ├───┼────┤                     │
│         │ │ k │  4 │                     │
│         │ ╘═══╧════╛                     │
├─────────┼────────────────────────────────┤
│ r       │ ╒═══╤════╕                     │
│         │ │ e │ 13 │                     │
│         │ ├───┼────┤                     │
│         │ │ w │  5 │                     │
│         │ ├───┼────┤                     │
│         │ │ o │  3 │                     │
│         │ ├───┼────┤                     │
│         │ │ k │  7 │                     │
│         │ ╘═══╧════╛                     │
├─────────┼────────────────────────────────┤
│ k       │ ╒═══╤═══╕                      │
│         │ │ n │ 3 │                      │
│         │ ├───┼───┤                      │
│         │ │ t │ 9 │                      │
│         │ ├───┼───┤                      │
│         │ │ o │ 4 │                      │
│         │ ├───┼───┤                      │
│         │ │ r │ 7 │                      │
│         │ ╘═══╧═══╛                      │
╘═════════╧════════════════════════════════╛
```


### For directed unweighted graph


```python
from ntwrk import graph


vertices = ["n", "e", "t", "w", "o", "r", "k"]
edges = ["ne", "nt", "nw", "no", "nk", "et", "eo", "er", "tw", "tk", "wo", "wr", "or", "ok", "rk"]


g = graph(vertices, edges, directed=True)
print(g)
```


#### Output


```bash
Vertices : {'n', 'e', 't', 'w', 'o', 'r', 'k'}
Edges : {'ne', 'nt', 'nw', 'no', 'nk', 'et', 'eo', 'er', 'tw', 'tk', 'wo', 'wr', 'or', 'ok', 'rk'}
```


#### You can show all details (adjacency matrix, adjacency list)


```python
from ntwrk import graph


vertices = ["n", "e", "t", "w", "o", "r", "k"]
edges = ["ne", "nt", "nw", "no", "nk", "et", "eo", "er", "tw", "tk", "wo", "wr", "or", "ok", "rk"]


g = graph(vertices, edges, directed=True, detail=True)
print(g)
```


#### Output


```bash
Adjacency matrix :
----------------

╒═════════╤═════╤═════╤═════╤═════╤═════╤═════╤═════╕
│ Nodes   │   n │   e │   t │   w │   o │   r │   k │
╞═════════╪═════╪═════╪═════╪═════╪═════╪═════╪═════╡
│ n       │   0 │   1 │   1 │   1 │   1 │   0 │   1 │
├─────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
│ e       │   0 │   0 │   1 │   0 │   1 │   1 │   0 │
├─────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
│ t       │   0 │   0 │   0 │   1 │   0 │   0 │   1 │
├─────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
│ w       │   0 │   0 │   0 │   0 │   1 │   1 │   0 │
├─────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
│ o       │   0 │   0 │   0 │   0 │   0 │   1 │   1 │
├─────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
│ r       │   0 │   0 │   0 │   0 │   0 │   0 │   1 │
├─────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
│ k       │   0 │   0 │   0 │   0 │   0 │   0 │   0 │
╘═════════╧═════╧═════╧═════╧═════╧═════╧═════╧═════╛

Adjacency list :
--------------

╒═════════╤══════════════════╕
│ Nodes   │ Adjacent Nodes   │
╞═════════╪══════════════════╡
│ n       │ ╒═══╕            │
│         │ │ e │            │
│         │ ├───┤            │
│         │ │ t │            │
│         │ ├───┤            │
│         │ │ w │            │
│         │ ├───┤            │
│         │ │ o │            │
│         │ ├───┤            │
│         │ │ k │            │
│         │ ╘═══╛            │
├─────────┼──────────────────┤
│ e       │ ╒═══╕            │
│         │ │ t │            │
│         │ ├───┤            │
│         │ │ o │            │
│         │ ├───┤            │
│         │ │ r │            │
│         │ ╘═══╛            │
├─────────┼──────────────────┤
│ t       │ ╒═══╕            │
│         │ │ w │            │
│         │ ├───┤            │
│         │ │ k │            │
│         │ ╘═══╛            │
├─────────┼──────────────────┤
│ w       │ ╒═══╕            │
│         │ │ o │            │
│         │ ├───┤            │
│         │ │ r │            │
│         │ ╘═══╛            │
├─────────┼──────────────────┤
│ o       │ ╒═══╕            │
│         │ │ r │            │
│         │ ├───┤            │
│         │ │ k │            │
│         │ ╘═══╛            │
├─────────┼──────────────────┤
│ r       │ k                │
╘═════════╧══════════════════╛
```


#### You can check whether the graph is strongly connected or weakly disconnected 


```python
from ntwrk import graph


vertices = ["n", "e", "t", "w", "o", "r", "k"]
edges = ["ne", "nt", "nw", "no", "nk", "et", "eo", "er", "tw", "tk", "wo", "wr", "or", "ok", "rk"]


g = graph(vertices, edges, directed=True, detail=True)
print(g.isStronglyConnected())
print(g.isWeaklyConnected())
```


#### Output


```bash
False
True
```


#### You can show the node indegree, outdegree  


```python
from ntwrk import graph


vertices = ["n", "e", "t", "w", "o", "r", "k"]
edges = ["ne", "nt", "nw", "no", "nk", "et", "eo", "er", "tw", "tk", "wo", "wr", "or", "ok", "rk"]


g = graph(vertices, edges, directed=True)
print(g.get_indegree("n"))
print(g.get_outdegree("n"))
```


#### Output


```bash
0
5
```


### For directed weighted graph


```python
from ntwrk import graph


vertices = ["n", "e", "t", "w", "o", "r", "k"]
edges = [("ne", 9), ("nt", 6), ("nw", 9), ("no", 1), ("nk", 3), ("et", 15), ("eo", 10), ("er", 13), ("tw", 3), ("tk", 9), ("wo", 8), ("wr", 5), ("or", 3), ("ok", 4), ("rk", 7)]


g = graph(vertices, edges, directed=True, weighted=True)
print(g)
```


#### Output


```bash
Vertices : {'n', 'e', 't', 'w', 'o', 'r', 'k'}
Edges : {['ne', 9], ['nt', 6], ['nw', 9], ['no', 1], ['nk', 3], ['et', 15], ['eo', 10], ['er', 13], ['tw', 3], ['tk', 9], ['wo', 8], ['wr', 5], ['or', 3], ['ok', 4], ['rk', 7]}
```


#### You can show all details (adjacency matrix, adjacency list)


```python
from ntwrk import graph


vertices = ["n", "e", "t", "w", "o", "r", "k"]
edges = [("ne", 9), ("nt", 6), ("nw", 9), ("no", 1), ("nk", 3), ("et", 15), ("eo", 10), ("er", 13), ("tw", 3), ("tk", 9), ("wo", 8), ("wr", 5), ("or", 3), ("ok", 4), ("rk", 7)]


g = graph(vertices, edges, directed=True, weighted=True, detail=True)
print(g)
```


#### Output


```bash
Adjacency matrix :
----------------

╒═════════╤═════╤═════╤═════╤═════╤═════╤═════╤═════╕
│ Nodes   │   n │   e │   t │   w │   o │   r │   k │
╞═════════╪═════╪═════╪═════╪═════╪═════╪═════╪═════╡
│ n       │   0 │   9 │   6 │   9 │   1 │   0 │   3 │
├─────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
│ e       │   0 │   0 │  15 │   0 │  10 │  13 │   0 │
├─────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
│ t       │   0 │   0 │   0 │   3 │   0 │   0 │   9 │
├─────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
│ w       │   0 │   0 │   0 │   0 │   8 │   5 │   0 │
├─────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
│ o       │   0 │   0 │   0 │   0 │   0 │   3 │   4 │
├─────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
│ r       │   0 │   0 │   0 │   0 │   0 │   0 │   7 │
├─────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
│ k       │   0 │   0 │   0 │   0 │   0 │   0 │   0 │
╘═════════╧═════╧═════╧═════╧═════╧═════╧═════╧═════╛

Adjacency list :
--------------

╒═════════╤════════════════════════════════╕
│ Nodes   │ ╒════════════════╤═════════╕   │
│         │ │ Adjacent Nodes │ Weights │   │
│         │ ╘════════════════╧═════════╛   │
╞═════════╪════════════════════════════════╡
│ n       │ ╒═══╤═══╕                      │
│         │ │ e │ 9 │                      │
│         │ ├───┼───┤                      │
│         │ │ t │ 6 │                      │
│         │ ├───┼───┤                      │
│         │ │ w │ 9 │                      │
│         │ ├───┼───┤                      │
│         │ │ o │ 1 │                      │
│         │ ├───┼───┤                      │
│         │ │ k │ 3 │                      │
│         │ ╘═══╧═══╛                      │
├─────────┼────────────────────────────────┤
│ e       │ ╒═══╤════╕                     │
│         │ │ t │ 15 │                     │
│         │ ├───┼────┤                     │
│         │ │ o │ 10 │                     │
│         │ ├───┼────┤                     │
│         │ │ r │ 13 │                     │
│         │ ╘═══╧════╛                     │
├─────────┼────────────────────────────────┤
│ t       │ ╒═══╤═══╕                      │
│         │ │ w │ 3 │                      │
│         │ ├───┼───┤                      │
│         │ │ k │ 9 │                      │
│         │ ╘═══╧═══╛                      │
├─────────┼────────────────────────────────┤
│ w       │ ╒═══╤═══╕                      │
│         │ │ o │ 8 │                      │
│         │ ├───┼───┤                      │
│         │ │ r │ 5 │                      │
│         │ ╘═══╧═══╛                      │
├─────────┼────────────────────────────────┤
│ o       │ ╒═══╤═══╕                      │
│         │ │ r │ 3 │                      │
│         │ ├───┼───┤                      │
│         │ │ k │ 4 │                      │
│         │ ╘═══╧═══╛                      │
├─────────┼────────────────────────────────┤
│ r       │ ╒═══╤═══╕                      │
│         │ │ k │ 7 │                      │
│         │ ╘═══╧═══╛                      │
╘═════════╧════════════════════════════════╛
```


### Note


You can use all the methods we use for undirected unweighted graph with other types of graphs as well.


## License


This project is licensed under the MIT LICENSE - see the [LICENSE](https://opensource.org/licenses/MIT) for more details.

            

Raw data

            {
    "_id": null,
    "home_page": "https://pypi.org/project/ntwrk/",
    "name": "ntwrk",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "graph",
    "author": "khiat Mohammed Abderrezzak",
    "author_email": "khiat.dev@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/dd/1d/174773b789fa869975c55c394937699f9ee5fc4c678c84c9e914b1a3d5cc/ntwrk-1.0.1.tar.gz",
    "platform": null,
    "description": "# ntwrk\n\n\n[![PyPI version](https://badge.fury.io/py/ntwrk.svg)](https://badge.fury.io/py/ntwrk)\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n\n\nThis library was created to simplify the concept of graphs by visualizing them in a perfect and clear way, especially for beginners in data structures.\n\n\n## Installation\n\n\nYou can install `ntwrk` via pip:\n\n\n```bash\npip install ntwrk\n```\n\n\n## Usage \n\n\n### For undirected unweighted graph\n\n\n```python\nfrom ntwrk import graph\n\n\nvertices = [\"n\", \"e\", \"t\", \"w\", \"o\", \"r\", \"k\"]\nedges = [\"ne\", \"nt\", \"nw\", \"no\", \"nk\", \"et\", \"eo\", \"er\", \"tw\", \"tk\", \"wo\", \"wr\", \"or\", \"ok\", \"rk\"]\n\n\ng = graph(vertices, edges)\nprint(g)\n```\n\n\n#### Output\n\n\n```bash\nVertices : {'n', 'e', 't', 'w', 'o', 'r', 'k'}\nEdges : {'ne', 'nt', 'nw', 'no', 'nk', 'et', 'eo', 'er', 'tw', 'tk', 'wo', 'wr', 'or', 'ok', 'rk'}\n```\n\n\n#### You can show all details (adjacency matrix, adjacency list)\n\n\n```python\nfrom ntwrk import graph\n\n\nvertices = [\"n\", \"e\", \"t\", \"w\", \"o\", \"r\", \"k\"]\nedges = [\"ne\", \"nt\", \"nw\", \"no\", \"nk\", \"et\", \"eo\", \"er\", \"tw\", \"tk\", \"wo\", \"wr\", \"or\", \"ok\", \"rk\"]\n\n\ng = graph(vertices, edges, detail=True)\nprint(g)\n```\n\n\n#### Output\n\n\n```bash\nAdjacency matrix :\n----------------\n\n\u2552\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2555\n\u2502 Nodes   \u2502   n \u2502   e \u2502   t \u2502   w \u2502   o \u2502   r \u2502   k \u2502\n\u255e\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u2561\n\u2502 n       \u2502   0 \u2502   1 \u2502   1 \u2502   1 \u2502   1 \u2502   0 \u2502   1 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 e       \u2502   1 \u2502   0 \u2502   1 \u2502   0 \u2502   1 \u2502   1 \u2502   0 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 t       \u2502   1 \u2502   1 \u2502   0 \u2502   1 \u2502   0 \u2502   0 \u2502   1 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 w       \u2502   1 \u2502   0 \u2502   1 \u2502   0 \u2502   1 \u2502   1 \u2502   0 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 o       \u2502   1 \u2502   1 \u2502   0 \u2502   1 \u2502   0 \u2502   1 \u2502   1 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 r       \u2502   0 \u2502   1 \u2502   0 \u2502   1 \u2502   1 \u2502   0 \u2502   1 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 k       \u2502   1 \u2502   0 \u2502   1 \u2502   0 \u2502   1 \u2502   1 \u2502   0 \u2502\n\u2558\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u255b\n\nAdjacency list :\n--------------\n\n\u2552\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2555\n\u2502 Nodes   \u2502 Adjacent Nodes   \u2502\n\u255e\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2561\n\u2502 n       \u2502 \u2552\u2550\u2550\u2550\u2555            \u2502\n\u2502         \u2502 \u2502 e \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 t \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 w \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 o \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 k \u2502            \u2502\n\u2502         \u2502 \u2558\u2550\u2550\u2550\u255b            \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 e       \u2502 \u2552\u2550\u2550\u2550\u2555            \u2502\n\u2502         \u2502 \u2502 n \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 t \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 o \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 r \u2502            \u2502\n\u2502         \u2502 \u2558\u2550\u2550\u2550\u255b            \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 t       \u2502 \u2552\u2550\u2550\u2550\u2555            \u2502\n\u2502         \u2502 \u2502 n \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 e \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 w \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 k \u2502            \u2502\n\u2502         \u2502 \u2558\u2550\u2550\u2550\u255b            \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 w       \u2502 \u2552\u2550\u2550\u2550\u2555            \u2502\n\u2502         \u2502 \u2502 n \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 t \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 o \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 r \u2502            \u2502\n\u2502         \u2502 \u2558\u2550\u2550\u2550\u255b            \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 o       \u2502 \u2552\u2550\u2550\u2550\u2555            \u2502\n\u2502         \u2502 \u2502 n \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 e \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 w \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 r \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 k \u2502            \u2502\n\u2502         \u2502 \u2558\u2550\u2550\u2550\u255b            \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 r       \u2502 \u2552\u2550\u2550\u2550\u2555            \u2502\n\u2502         \u2502 \u2502 e \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 w \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 o \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 k \u2502            \u2502\n\u2502         \u2502 \u2558\u2550\u2550\u2550\u255b            \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 k       \u2502 \u2552\u2550\u2550\u2550\u2555            \u2502\n\u2502         \u2502 \u2502 n \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 t \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 o \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 r \u2502            \u2502\n\u2502         \u2502 \u2558\u2550\u2550\u2550\u255b            \u2502\n\u2558\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u255b\n```\n\n\n#### You can add nodes with edges\n\n\n```python\nfrom ntwrk import graph\n\n\nvertices = [\"n\", \"e\", \"t\", \"w\", \"o\", \"r\", \"k\"]\nedges = [\"ne\", \"nt\", \"nw\", \"no\", \"nk\", \"et\", \"eo\", \"er\", \"tw\", \"tk\", \"wo\", \"wr\", \"or\", \"ok\", \"rk\"]\n\n\ng = graph(vertices, edges)\nprint(g)\ng.add(\"x\", edge=\"kx\")\nprint(g)\n```\n\n\n#### Output\n\n\n```bash\nVertices : {'n', 'e', 't', 'w', 'o', 'r', 'k'}\nEdges : {'ne', 'nt', 'nw', 'no', 'nk', 'et', 'eo', 'er', 'tw', 'tk', 'wo', 'wr', 'or', 'ok', 'rk'}\nVertices : {'n', 'e', 't', 'w', 'o', 'r', 'k', 'x'}\nEdges : {'ne', 'nt', 'nw', 'no', 'nk', 'et', 'eo', 'er', 'tw', 'tk', 'wo', 'wr', 'or', 'ok', 'rk', 'kx'}\n```\n\n\n#### You can add nodes and edges\n\n\n```python\nfrom ntwrk import graph\n\n\nvertices = [\"n\", \"e\", \"t\", \"w\", \"o\", \"r\", \"k\"]\nedges = [\"ne\", \"nt\", \"nw\", \"no\", \"nk\", \"et\", \"eo\", \"er\", \"tw\", \"tk\", \"wo\", \"wr\", \"or\", \"ok\", \"rk\"]\n\n\ng = graph(vertices, edges)\nprint(g)\ng.add(\"x\")\ng.add_edge(node1=\"k\", node2=\"x\")\nprint(g)\n```\n\n\n#### Output\n\n\n```bash\nVertices : {'n', 'e', 't', 'w', 'o', 'r', 'k'}\nEdges : {'ne', 'nt', 'nw', 'no', 'nk', 'et', 'eo', 'er', 'tw', 'tk', 'wo', 'wr', 'or', 'ok', 'rk'}\nVertices : {'n', 'e', 't', 'w', 'o', 'r', 'k', 'x'}\nEdges : {'ne', 'nt', 'nw', 'no', 'nk', 'et', 'eo', 'er', 'tw', 'tk', 'wo', 'wr', 'or', 'ok', 'rk', 'kx'}\n```\n\n\n#### You can delete nodes\n\n\n```python\nfrom ntwrk import graph\n\n\nvertices = [\"n\", \"e\", \"t\", \"w\", \"o\", \"r\", \"k\", \"x\"]\nedges = [\"ne\", \"nt\", \"nw\", \"no\", \"nk\", \"et\", \"eo\", \"er\", \"tw\", \"tk\", \"wo\", \"wr\", \"or\", \"ok\", \"rk\", \"kx\"]\n\n\ng = graph(vertices, edges)\nprint(g)\ng.delete_node(\"x\")\nprint(g)\n```\n\n\n#### Output\n\n\n```bash\nVertices : {'n', 'e', 't', 'w', 'o', 'r', 'k', 'x'}\nEdges : {'ne', 'nt', 'nw', 'no', 'nk', 'et', 'eo', 'er', 'tw', 'tk', 'wo', 'wr', 'or', 'ok', 'rk', 'kx'}\nVertices : {'n', 'e', 't', 'w', 'o', 'r', 'k'}\nEdges : {'ne', 'nt', 'nw', 'no', 'nk', 'et', 'eo', 'er', 'tw', 'tk', 'wo', 'wr', 'or', 'ok', 'rk'}\n```\n\n\n#### You can delete edges\n\n\n```python\nfrom ntwrk import graph\n\n\nvertices = [\"n\", \"e\", \"t\", \"w\", \"o\", \"r\", \"k\", \"x\"]\nedges = [\"ne\", \"nt\", \"nw\", \"no\", \"nk\", \"et\", \"eo\", \"er\", \"tw\", \"tk\", \"wo\", \"wr\", \"or\", \"ok\", \"rk\", \"kx\"]\n\n\ng = graph(vertices, edges)\nprint(g)\ng.delete_edge(\"k\", \"x\")\nprint(g)\n```\n\n\n#### Output\n\n\n```bash\nVertices : {'n', 'e', 't', 'w', 'o', 'r', 'k', 'x'}\nEdges : {'ne', 'nt', 'nw', 'no', 'nk', 'et', 'eo', 'er', 'tw', 'tk', 'wo', 'wr', 'or', 'ok', 'rk', 'kx'}\nVertices : {'n', 'e', 't', 'w', 'o', 'r', 'k', 'x'}\nEdges : {'ne', 'nt', 'nw', 'no', 'nk', 'et', 'eo', 'er', 'tw', 'tk', 'wo', 'wr', 'or', 'ok', 'rk'}\n```\n\n\n#### You can show how many nodes are in the graph\n\n\n```python\nfrom ntwrk import graph\n\n\nvertices = [\"n\", \"e\", \"t\", \"w\", \"o\", \"r\", \"k\"]\nedges = [\"ne\", \"nt\", \"nw\", \"no\", \"nk\", \"et\", \"eo\", \"er\", \"tw\", \"tk\", \"wo\", \"wr\", \"or\", \"ok\", \"rk\"]\n\n\ng = graph(vertices, edges)\nprint(len(g))\n```\n\n\n#### Output\n\n\n```bash\n7\n```\n\n\n#### You can show how many edges are in the graph\n\n\n```python\nfrom ntwrk import graph\n\n\nvertices = [\"n\", \"e\", \"t\", \"w\", \"o\", \"r\", \"k\"]\nedges = [\"ne\", \"nt\", \"nw\", \"no\", \"nk\", \"et\", \"eo\", \"er\", \"tw\", \"tk\", \"wo\", \"wr\", \"or\", \"ok\", \"rk\"]\n\n\ng = graph(vertices, edges)\nprint(g.edge_count())\n```\n\n\n#### Output\n\n\n```bash\n15\n```\n\n\n#### You can show how many degrees are in the graph\n\n\n```python\nfrom ntwrk import graph\n\n\nvertices = [\"n\", \"e\", \"t\", \"w\", \"o\", \"r\", \"k\"]\nedges = [\"ne\", \"nt\", \"nw\", \"no\", \"nk\", \"et\", \"eo\", \"er\", \"tw\", \"tk\", \"wo\", \"wr\", \"or\", \"ok\", \"rk\"]\n\n\ng = graph(vertices, edges)\nprint(g.degree_count())\n```\n\n\n#### Output\n\n\n```bash\n30\n```\n\n\n#### You can show the node degree  \n\n\n```python\nfrom ntwrk import graph\n\n\nvertices = [\"n\", \"e\", \"t\", \"w\", \"o\", \"r\", \"k\"]\nedges = [\"ne\", \"nt\", \"nw\", \"no\", \"nk\", \"et\", \"eo\", \"er\", \"tw\", \"tk\", \"wo\", \"wr\", \"or\", \"ok\", \"rk\"]\n\n\ng = graph(vertices, edges)\nprint(g.get_degree(\"n\"))\n```\n\n\n#### Output\n\n\n```bash\n5\n```\n\n\n#### You can traverse the graph using different algorithms (DFS, BFS)\n\n\n```python\nfrom ntwrk import graph\n\n\nvertices = [\"n\", \"e\", \"t\", \"w\", \"o\", \"r\", \"k\"]\nedges = [\"ne\", \"nt\", \"nw\", \"no\", \"nk\", \"et\", \"eo\", \"er\", \"tw\", \"tk\", \"wo\", \"wr\", \"or\", \"ok\", \"rk\"]\n\n\ng = graph(vertices, edges)\nprint(g.traverse(\"n\"))\nprint(g.traverse(\"n\", algorithm=\"dfs\"))\nprint(g.traverse(\"n\", algorithm=\"bfs\"))\n```\n\n\n#### Output\n\n\n```bash\n['n', 'e', 't', 'w', 'o', 'r', 'k']\n['n', 'k', 'r', 'o', 'w', 't', 'e']\n['n', 'e', 't', 'w', 'o', 'k', 'r']\n```\n\n\n#### You can find the path between two nodes\n\n\n```python\nfrom ntwrk import graph\n\n\nvertices = [\"n\", \"e\", \"t\", \"w\", \"o\", \"r\", \"k\"]\nedges = [\"ne\", \"nt\", \"nw\", \"no\", \"nk\", \"et\", \"eo\", \"er\", \"tw\", \"tk\", \"wo\", \"wr\", \"or\", \"ok\", \"rk\"]\n\n\ng = graph(vertices, edges)\nprint(g.find_path(\"n\", \"k\"))\n```\n\n\n#### Output\n\n\n```bash\n['n', 'e', 't', 'w', 'o', 'r', 'k']\n```\n\n\n#### You can check whether the graph is connected or disconnected \n\n\n```python\nfrom ntwrk import graph\n\n\nvertices = [\"n\", \"e\", \"t\", \"w\", \"o\", \"r\", \"k\"]\nedges = [\"ne\", \"nt\", \"nw\", \"no\", \"nk\", \"et\", \"eo\", \"er\", \"tw\", \"tk\", \"wo\", \"wr\", \"or\", \"ok\", \"rk\"]\n\n\ng = graph(vertices, edges)\nprint(g.isConnected())\nprint(g.isDisconnected())\n```\n\n\n#### Output\n\n\n```bash\nTrue\nFalse\n```\n\n\n#### You can create a complete graph\n\n\n```python\nfrom ntwrk import graph\n\n\nvertices = [\"n\", \"e\", \"t\", \"w\", \"o\", \"r\", \"k\"]\n\n\ng = graph(vertices, complete=True)\nprint(g)\n```\n\n\n#### Output\n\n\n```bash\nVertices : {'n', 'e', 't', 'w', 'o', 'r', 'k'}\nEdges : {'ne', 'nt', 'nw', 'no', 'nr', 'nk', 'et', 'ew', 'eo', 'er', 'ek', 'tw', 'to', 'tr', 'tk', 'wo', 'wr', 'wk', 'or', 'ok', 'rk'}\n```\n\n\n### For undirected weighted graph\n\n\n```python\nfrom ntwrk import graph\n\n\nvertices = [\"n\", \"e\", \"t\", \"w\", \"o\", \"r\", \"k\"]\nedges = [(\"ne\", 9), (\"nt\", 6), (\"nw\", 9), (\"no\", 1), (\"nk\", 3), (\"et\", 15), (\"eo\", 10), (\"er\", 13), (\"tw\", 3), (\"tk\", 9), (\"wo\", 8), (\"wr\", 5), (\"or\", 3), (\"ok\", 4), (\"rk\", 7)]\n\n\ng = graph(vertices, edges, weighted=True)\nprint(g)\n```\n\n\n#### Output\n\n\n```bash\nVertices : {'n', 'e', 't', 'w', 'o', 'r', 'k'}\nEdges : {['ne', 9], ['nt', 6], ['nw', 9], ['no', 1], ['nk', 3], ['et', 15], ['eo', 10], ['er', 13], ['tw', 3], ['tk', 9], ['wo', 8], ['wr', 5], ['or', 3], ['ok', 4], ['rk', 7]}\n```\n\n\n#### You can show all details (adjacency matrix, adjacency list)\n\n\n```python\nfrom ntwrk import graph\n\n\nvertices = [\"n\", \"e\", \"t\", \"w\", \"o\", \"r\", \"k\"]\nedges = [(\"ne\", 9), (\"nt\", 6), (\"nw\", 9), (\"no\", 1), (\"nk\", 3), (\"et\", 15), (\"eo\", 10), (\"er\", 13), (\"tw\", 3), (\"tk\", 9), (\"wo\", 8), (\"wr\", 5), (\"or\", 3), (\"ok\", 4), (\"rk\", 7)]\n\n\ng = graph(vertices, edges, weighted=True, detail=True)\nprint(g)\n```\n\n\n#### Output\n\n\n```bash\nAdjacency matrix :\n----------------\n\n\u2552\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2555\n\u2502 Nodes   \u2502   n \u2502   e \u2502   t \u2502   w \u2502   o \u2502   r \u2502   k \u2502\n\u255e\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u2561\n\u2502 n       \u2502   0 \u2502   9 \u2502   6 \u2502   9 \u2502   1 \u2502   0 \u2502   3 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 e       \u2502   9 \u2502   0 \u2502  15 \u2502   0 \u2502  10 \u2502  13 \u2502   0 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 t       \u2502   6 \u2502  15 \u2502   0 \u2502   3 \u2502   0 \u2502   0 \u2502   9 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 w       \u2502   9 \u2502   0 \u2502   3 \u2502   0 \u2502   8 \u2502   5 \u2502   0 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 o       \u2502   1 \u2502  10 \u2502   0 \u2502   8 \u2502   0 \u2502   3 \u2502   4 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 r       \u2502   0 \u2502  13 \u2502   0 \u2502   5 \u2502   3 \u2502   0 \u2502   7 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 k       \u2502   3 \u2502   0 \u2502   9 \u2502   0 \u2502   4 \u2502   7 \u2502   0 \u2502\n\u2558\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u255b\n\nAdjacency list :\n--------------\n\n\u2552\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2555\n\u2502 Nodes   \u2502 \u2552\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2555   \u2502\n\u2502         \u2502 \u2502 Adjacent Nodes \u2502 Weights \u2502   \u2502\n\u2502         \u2502 \u2558\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u255b   \u2502\n\u255e\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2561\n\u2502 n       \u2502 \u2552\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2555                      \u2502\n\u2502         \u2502 \u2502 e \u2502 9 \u2502                      \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2524                      \u2502\n\u2502         \u2502 \u2502 t \u2502 6 \u2502                      \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2524                      \u2502\n\u2502         \u2502 \u2502 w \u2502 9 \u2502                      \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2524                      \u2502\n\u2502         \u2502 \u2502 o \u2502 1 \u2502                      \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2524                      \u2502\n\u2502         \u2502 \u2502 k \u2502 3 \u2502                      \u2502\n\u2502         \u2502 \u2558\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u255b                      \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 e       \u2502 \u2552\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2555                     \u2502\n\u2502         \u2502 \u2502 n \u2502  9 \u2502                     \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2524                     \u2502\n\u2502         \u2502 \u2502 t \u2502 15 \u2502                     \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2524                     \u2502\n\u2502         \u2502 \u2502 o \u2502 10 \u2502                     \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2524                     \u2502\n\u2502         \u2502 \u2502 r \u2502 13 \u2502                     \u2502\n\u2502         \u2502 \u2558\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u255b                     \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 t       \u2502 \u2552\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2555                     \u2502\n\u2502         \u2502 \u2502 n \u2502  6 \u2502                     \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2524                     \u2502\n\u2502         \u2502 \u2502 e \u2502 15 \u2502                     \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2524                     \u2502\n\u2502         \u2502 \u2502 w \u2502  3 \u2502                     \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2524                     \u2502\n\u2502         \u2502 \u2502 k \u2502  9 \u2502                     \u2502\n\u2502         \u2502 \u2558\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u255b                     \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 w       \u2502 \u2552\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2555                      \u2502\n\u2502         \u2502 \u2502 n \u2502 9 \u2502                      \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2524                      \u2502\n\u2502         \u2502 \u2502 t \u2502 3 \u2502                      \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2524                      \u2502\n\u2502         \u2502 \u2502 o \u2502 8 \u2502                      \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2524                      \u2502\n\u2502         \u2502 \u2502 r \u2502 5 \u2502                      \u2502\n\u2502         \u2502 \u2558\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u255b                      \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 o       \u2502 \u2552\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2555                     \u2502\n\u2502         \u2502 \u2502 n \u2502  1 \u2502                     \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2524                     \u2502\n\u2502         \u2502 \u2502 e \u2502 10 \u2502                     \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2524                     \u2502\n\u2502         \u2502 \u2502 w \u2502  8 \u2502                     \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2524                     \u2502\n\u2502         \u2502 \u2502 r \u2502  3 \u2502                     \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2524                     \u2502\n\u2502         \u2502 \u2502 k \u2502  4 \u2502                     \u2502\n\u2502         \u2502 \u2558\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u255b                     \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 r       \u2502 \u2552\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2555                     \u2502\n\u2502         \u2502 \u2502 e \u2502 13 \u2502                     \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2524                     \u2502\n\u2502         \u2502 \u2502 w \u2502  5 \u2502                     \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2524                     \u2502\n\u2502         \u2502 \u2502 o \u2502  3 \u2502                     \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2524                     \u2502\n\u2502         \u2502 \u2502 k \u2502  7 \u2502                     \u2502\n\u2502         \u2502 \u2558\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u255b                     \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 k       \u2502 \u2552\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2555                      \u2502\n\u2502         \u2502 \u2502 n \u2502 3 \u2502                      \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2524                      \u2502\n\u2502         \u2502 \u2502 t \u2502 9 \u2502                      \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2524                      \u2502\n\u2502         \u2502 \u2502 o \u2502 4 \u2502                      \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2524                      \u2502\n\u2502         \u2502 \u2502 r \u2502 7 \u2502                      \u2502\n\u2502         \u2502 \u2558\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u255b                      \u2502\n\u2558\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u255b\n```\n\n\n### For directed unweighted graph\n\n\n```python\nfrom ntwrk import graph\n\n\nvertices = [\"n\", \"e\", \"t\", \"w\", \"o\", \"r\", \"k\"]\nedges = [\"ne\", \"nt\", \"nw\", \"no\", \"nk\", \"et\", \"eo\", \"er\", \"tw\", \"tk\", \"wo\", \"wr\", \"or\", \"ok\", \"rk\"]\n\n\ng = graph(vertices, edges, directed=True)\nprint(g)\n```\n\n\n#### Output\n\n\n```bash\nVertices : {'n', 'e', 't', 'w', 'o', 'r', 'k'}\nEdges : {'ne', 'nt', 'nw', 'no', 'nk', 'et', 'eo', 'er', 'tw', 'tk', 'wo', 'wr', 'or', 'ok', 'rk'}\n```\n\n\n#### You can show all details (adjacency matrix, adjacency list)\n\n\n```python\nfrom ntwrk import graph\n\n\nvertices = [\"n\", \"e\", \"t\", \"w\", \"o\", \"r\", \"k\"]\nedges = [\"ne\", \"nt\", \"nw\", \"no\", \"nk\", \"et\", \"eo\", \"er\", \"tw\", \"tk\", \"wo\", \"wr\", \"or\", \"ok\", \"rk\"]\n\n\ng = graph(vertices, edges, directed=True, detail=True)\nprint(g)\n```\n\n\n#### Output\n\n\n```bash\nAdjacency matrix :\n----------------\n\n\u2552\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2555\n\u2502 Nodes   \u2502   n \u2502   e \u2502   t \u2502   w \u2502   o \u2502   r \u2502   k \u2502\n\u255e\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u2561\n\u2502 n       \u2502   0 \u2502   1 \u2502   1 \u2502   1 \u2502   1 \u2502   0 \u2502   1 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 e       \u2502   0 \u2502   0 \u2502   1 \u2502   0 \u2502   1 \u2502   1 \u2502   0 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 t       \u2502   0 \u2502   0 \u2502   0 \u2502   1 \u2502   0 \u2502   0 \u2502   1 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 w       \u2502   0 \u2502   0 \u2502   0 \u2502   0 \u2502   1 \u2502   1 \u2502   0 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 o       \u2502   0 \u2502   0 \u2502   0 \u2502   0 \u2502   0 \u2502   1 \u2502   1 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 r       \u2502   0 \u2502   0 \u2502   0 \u2502   0 \u2502   0 \u2502   0 \u2502   1 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 k       \u2502   0 \u2502   0 \u2502   0 \u2502   0 \u2502   0 \u2502   0 \u2502   0 \u2502\n\u2558\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u255b\n\nAdjacency list :\n--------------\n\n\u2552\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2555\n\u2502 Nodes   \u2502 Adjacent Nodes   \u2502\n\u255e\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2561\n\u2502 n       \u2502 \u2552\u2550\u2550\u2550\u2555            \u2502\n\u2502         \u2502 \u2502 e \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 t \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 w \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 o \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 k \u2502            \u2502\n\u2502         \u2502 \u2558\u2550\u2550\u2550\u255b            \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 e       \u2502 \u2552\u2550\u2550\u2550\u2555            \u2502\n\u2502         \u2502 \u2502 t \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 o \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 r \u2502            \u2502\n\u2502         \u2502 \u2558\u2550\u2550\u2550\u255b            \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 t       \u2502 \u2552\u2550\u2550\u2550\u2555            \u2502\n\u2502         \u2502 \u2502 w \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 k \u2502            \u2502\n\u2502         \u2502 \u2558\u2550\u2550\u2550\u255b            \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 w       \u2502 \u2552\u2550\u2550\u2550\u2555            \u2502\n\u2502         \u2502 \u2502 o \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 r \u2502            \u2502\n\u2502         \u2502 \u2558\u2550\u2550\u2550\u255b            \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 o       \u2502 \u2552\u2550\u2550\u2550\u2555            \u2502\n\u2502         \u2502 \u2502 r \u2502            \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u2524            \u2502\n\u2502         \u2502 \u2502 k \u2502            \u2502\n\u2502         \u2502 \u2558\u2550\u2550\u2550\u255b            \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 r       \u2502 k                \u2502\n\u2558\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u255b\n```\n\n\n#### You can check whether the graph is strongly connected or weakly disconnected \n\n\n```python\nfrom ntwrk import graph\n\n\nvertices = [\"n\", \"e\", \"t\", \"w\", \"o\", \"r\", \"k\"]\nedges = [\"ne\", \"nt\", \"nw\", \"no\", \"nk\", \"et\", \"eo\", \"er\", \"tw\", \"tk\", \"wo\", \"wr\", \"or\", \"ok\", \"rk\"]\n\n\ng = graph(vertices, edges, directed=True, detail=True)\nprint(g.isStronglyConnected())\nprint(g.isWeaklyConnected())\n```\n\n\n#### Output\n\n\n```bash\nFalse\nTrue\n```\n\n\n#### You can show the node indegree, outdegree  \n\n\n```python\nfrom ntwrk import graph\n\n\nvertices = [\"n\", \"e\", \"t\", \"w\", \"o\", \"r\", \"k\"]\nedges = [\"ne\", \"nt\", \"nw\", \"no\", \"nk\", \"et\", \"eo\", \"er\", \"tw\", \"tk\", \"wo\", \"wr\", \"or\", \"ok\", \"rk\"]\n\n\ng = graph(vertices, edges, directed=True)\nprint(g.get_indegree(\"n\"))\nprint(g.get_outdegree(\"n\"))\n```\n\n\n#### Output\n\n\n```bash\n0\n5\n```\n\n\n### For directed weighted graph\n\n\n```python\nfrom ntwrk import graph\n\n\nvertices = [\"n\", \"e\", \"t\", \"w\", \"o\", \"r\", \"k\"]\nedges = [(\"ne\", 9), (\"nt\", 6), (\"nw\", 9), (\"no\", 1), (\"nk\", 3), (\"et\", 15), (\"eo\", 10), (\"er\", 13), (\"tw\", 3), (\"tk\", 9), (\"wo\", 8), (\"wr\", 5), (\"or\", 3), (\"ok\", 4), (\"rk\", 7)]\n\n\ng = graph(vertices, edges, directed=True, weighted=True)\nprint(g)\n```\n\n\n#### Output\n\n\n```bash\nVertices : {'n', 'e', 't', 'w', 'o', 'r', 'k'}\nEdges : {['ne', 9], ['nt', 6], ['nw', 9], ['no', 1], ['nk', 3], ['et', 15], ['eo', 10], ['er', 13], ['tw', 3], ['tk', 9], ['wo', 8], ['wr', 5], ['or', 3], ['ok', 4], ['rk', 7]}\n```\n\n\n#### You can show all details (adjacency matrix, adjacency list)\n\n\n```python\nfrom ntwrk import graph\n\n\nvertices = [\"n\", \"e\", \"t\", \"w\", \"o\", \"r\", \"k\"]\nedges = [(\"ne\", 9), (\"nt\", 6), (\"nw\", 9), (\"no\", 1), (\"nk\", 3), (\"et\", 15), (\"eo\", 10), (\"er\", 13), (\"tw\", 3), (\"tk\", 9), (\"wo\", 8), (\"wr\", 5), (\"or\", 3), (\"ok\", 4), (\"rk\", 7)]\n\n\ng = graph(vertices, edges, directed=True, weighted=True, detail=True)\nprint(g)\n```\n\n\n#### Output\n\n\n```bash\nAdjacency matrix :\n----------------\n\n\u2552\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2555\n\u2502 Nodes   \u2502   n \u2502   e \u2502   t \u2502   w \u2502   o \u2502   r \u2502   k \u2502\n\u255e\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u2561\n\u2502 n       \u2502   0 \u2502   9 \u2502   6 \u2502   9 \u2502   1 \u2502   0 \u2502   3 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 e       \u2502   0 \u2502   0 \u2502  15 \u2502   0 \u2502  10 \u2502  13 \u2502   0 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 t       \u2502   0 \u2502   0 \u2502   0 \u2502   3 \u2502   0 \u2502   0 \u2502   9 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 w       \u2502   0 \u2502   0 \u2502   0 \u2502   0 \u2502   8 \u2502   5 \u2502   0 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 o       \u2502   0 \u2502   0 \u2502   0 \u2502   0 \u2502   0 \u2502   3 \u2502   4 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 r       \u2502   0 \u2502   0 \u2502   0 \u2502   0 \u2502   0 \u2502   0 \u2502   7 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 k       \u2502   0 \u2502   0 \u2502   0 \u2502   0 \u2502   0 \u2502   0 \u2502   0 \u2502\n\u2558\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u255b\n\nAdjacency list :\n--------------\n\n\u2552\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2555\n\u2502 Nodes   \u2502 \u2552\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2555   \u2502\n\u2502         \u2502 \u2502 Adjacent Nodes \u2502 Weights \u2502   \u2502\n\u2502         \u2502 \u2558\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u255b   \u2502\n\u255e\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u256a\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2561\n\u2502 n       \u2502 \u2552\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2555                      \u2502\n\u2502         \u2502 \u2502 e \u2502 9 \u2502                      \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2524                      \u2502\n\u2502         \u2502 \u2502 t \u2502 6 \u2502                      \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2524                      \u2502\n\u2502         \u2502 \u2502 w \u2502 9 \u2502                      \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2524                      \u2502\n\u2502         \u2502 \u2502 o \u2502 1 \u2502                      \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2524                      \u2502\n\u2502         \u2502 \u2502 k \u2502 3 \u2502                      \u2502\n\u2502         \u2502 \u2558\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u255b                      \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 e       \u2502 \u2552\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2550\u2555                     \u2502\n\u2502         \u2502 \u2502 t \u2502 15 \u2502                     \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2524                     \u2502\n\u2502         \u2502 \u2502 o \u2502 10 \u2502                     \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2524                     \u2502\n\u2502         \u2502 \u2502 r \u2502 13 \u2502                     \u2502\n\u2502         \u2502 \u2558\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u255b                     \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 t       \u2502 \u2552\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2555                      \u2502\n\u2502         \u2502 \u2502 w \u2502 3 \u2502                      \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2524                      \u2502\n\u2502         \u2502 \u2502 k \u2502 9 \u2502                      \u2502\n\u2502         \u2502 \u2558\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u255b                      \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 w       \u2502 \u2552\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2555                      \u2502\n\u2502         \u2502 \u2502 o \u2502 8 \u2502                      \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2524                      \u2502\n\u2502         \u2502 \u2502 r \u2502 5 \u2502                      \u2502\n\u2502         \u2502 \u2558\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u255b                      \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 o       \u2502 \u2552\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2555                      \u2502\n\u2502         \u2502 \u2502 r \u2502 3 \u2502                      \u2502\n\u2502         \u2502 \u251c\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2524                      \u2502\n\u2502         \u2502 \u2502 k \u2502 4 \u2502                      \u2502\n\u2502         \u2502 \u2558\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u255b                      \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 r       \u2502 \u2552\u2550\u2550\u2550\u2564\u2550\u2550\u2550\u2555                      \u2502\n\u2502         \u2502 \u2502 k \u2502 7 \u2502                      \u2502\n\u2502         \u2502 \u2558\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u255b                      \u2502\n\u2558\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2567\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u255b\n```\n\n\n### Note\n\n\nYou can use all the methods we use for undirected unweighted graph with other types of graphs as well.\n\n\n## License\n\n\nThis project is licensed under the MIT LICENSE - see the [LICENSE](https://opensource.org/licenses/MIT) for more details.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Sophisticate Graph",
    "version": "1.0.1",
    "project_urls": {
        "Homepage": "https://pypi.org/project/ntwrk/"
    },
    "split_keywords": [
        "graph"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "48204d09e993ae133673041cce82e791120b75c083ab390a189ade72ab6069c5",
                "md5": "458a5b28fed601c4aa44cc5a30c6b70f",
                "sha256": "bad19f1ae9aa42fd7f684961636757eed363d9a4c2d276297dbf096968eca4f8"
            },
            "downloads": -1,
            "filename": "ntwrk-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "458a5b28fed601c4aa44cc5a30c6b70f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 10623,
            "upload_time": "2024-10-23T17:03:24",
            "upload_time_iso_8601": "2024-10-23T17:03:24.693792Z",
            "url": "https://files.pythonhosted.org/packages/48/20/4d09e993ae133673041cce82e791120b75c083ab390a189ade72ab6069c5/ntwrk-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "dd1d174773b789fa869975c55c394937699f9ee5fc4c678c84c9e914b1a3d5cc",
                "md5": "92c7119c836ac4b76238dff003fdb9a8",
                "sha256": "a46e3b5b792ffd46a40da61b7f749cfc4a1a8719576f3eb81bdeeb10d7dba25a"
            },
            "downloads": -1,
            "filename": "ntwrk-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "92c7119c836ac4b76238dff003fdb9a8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 14542,
            "upload_time": "2024-10-23T17:03:27",
            "upload_time_iso_8601": "2024-10-23T17:03:27.459954Z",
            "url": "https://files.pythonhosted.org/packages/dd/1d/174773b789fa869975c55c394937699f9ee5fc4c678c84c9e914b1a3d5cc/ntwrk-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-23 17:03:27",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "ntwrk"
}
        
Elapsed time: 1.81046s