nuance


Namenuance JSON
Version 0.8.1 PyPI version JSON
download
home_pageNone
SummaryTransit signals detection among correlated noises
upload_time2024-07-31 00:34:00
maintainerNone
docs_urlNone
authorLionel Garcia
requires_python>=3.9
licenseNone
keywords astronomy exoplanets jax transit
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # nuance
Efficient detection of planets transiting quiet or active stars

<p align="center">
    <img src="docs/_static/illu_readme.png" height="350" style="margin:50px">
</p>

*nuance* uses linear models and Gaussian processes (using the [JAX](https://github.com/google/jax)-based [tinygp](https://github.com/dfm/tinygp)) to simultaneously **search for planetary transits while modeling correlated noises** (e.g. stellar variability) in a tractable way. See [the paper](https://arxiv.org/abs/2402.06835) for more details.

When to use *nuance*?
- To detect single or periodic transits
- When correlated noises are present in the data (e.g. stellar variability or instrumental systematics)
- For space-based or sparse ground-based observations
- To effectively find transits in light curves from multiple instruments
- To use GPUs for fast transit searches

Documentation at [nuance.readthedocs.io](https://nuance.readthedocs.io)

## Example

```python
import numpy as np
from nuance import linear_search, periodic_search, core

# linear search
epochs = time.copy()
durations = np.linspace(0.01, 0.2, 15)
ls = linear_search(time, flux, gp=gp)(epochs, durations)

# periodic search
periods = np.linspace(0.3, 5, 2000)
snr_function = jax.jit(core.snr(time, flux, gp=gp))
ps_function = periodic_search(epochs, durations, ls, snr_function)
snr, params = ps_function(periods)

t0, D, P = params[np.argmax(snr)]
```

## Installation

`nuance` is written for python 3 and can be installed using pip

```shell
pip install nuance
```

or from sources
  
```shell
git clone https://github.com/lgrcia/nuance
cd nuance
pip install -e .
```

## Citation

If you find *nuance* useful for your research, cite [Garcia et. al 2024](https://ui.adsabs.harvard.edu/abs/2024AJ....167..284G). The BibTeX entry for the paper is:

```
@ARTICLE{2024AJ....167..284G,
       author = {{Garcia}, Lionel J. and {Foreman-Mackey}, Daniel and {Murray}, Catriona A. and {Aigrain}, Suzanne and {Feliz}, Dax L. and {Pozuelos}, Francisco J.},
        title = "{nuance: Efficient Detection of Planets Transiting Active Stars}",
      journal = {\aj},
     keywords = {Exoplanet detection methods, Stellar activity, Time series analysis, Gaussian Processes regression, Computational methods, GPU computing, 489, 1580, 1916, 1930, 1965, 1969, Astrophysics - Earth and Planetary Astrophysics, Astrophysics - Instrumentation and Methods for Astrophysics},
         year = 2024,
        month = jun,
       volume = {167},
       number = {6},
          eid = {284},
        pages = {284},
          doi = {10.3847/1538-3881/ad3cd6},
archivePrefix = {arXiv},
       eprint = {2402.06835},
 primaryClass = {astro-ph.EP},
       adsurl = {https://ui.adsabs.harvard.edu/abs/2024AJ....167..284G},
      adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
```
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "nuance",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "astronomy, exoplanets, jax, transit",
    "author": "Lionel Garcia",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/52/fe/4b20fe32ebd8f78b6154dd45e521f4c0a79b2bc9e2fc994e28f9338f6399/nuance-0.8.1.tar.gz",
    "platform": null,
    "description": "# nuance\nEfficient detection of planets transiting quiet or active stars\n\n<p align=\"center\">\n    <img src=\"docs/_static/illu_readme.png\" height=\"350\" style=\"margin:50px\">\n</p>\n\n*nuance* uses linear models and Gaussian processes (using the [JAX](https://github.com/google/jax)-based [tinygp](https://github.com/dfm/tinygp)) to simultaneously **search for planetary transits while modeling correlated noises** (e.g. stellar variability) in a tractable way. See [the paper](https://arxiv.org/abs/2402.06835) for more details.\n\nWhen to use *nuance*?\n- To detect single or periodic transits\n- When correlated noises are present in the data (e.g. stellar variability or instrumental systematics)\n- For space-based or sparse ground-based observations\n- To effectively find transits in light curves from multiple instruments\n- To use GPUs for fast transit searches\n\nDocumentation at [nuance.readthedocs.io](https://nuance.readthedocs.io)\n\n## Example\n\n```python\nimport numpy as np\nfrom nuance import linear_search, periodic_search, core\n\n# linear search\nepochs = time.copy()\ndurations = np.linspace(0.01, 0.2, 15)\nls = linear_search(time, flux, gp=gp)(epochs, durations)\n\n# periodic search\nperiods = np.linspace(0.3, 5, 2000)\nsnr_function = jax.jit(core.snr(time, flux, gp=gp))\nps_function = periodic_search(epochs, durations, ls, snr_function)\nsnr, params = ps_function(periods)\n\nt0, D, P = params[np.argmax(snr)]\n```\n\n## Installation\n\n`nuance` is written for python 3 and can be installed using pip\n\n```shell\npip install nuance\n```\n\nor from sources\n  \n```shell\ngit clone https://github.com/lgrcia/nuance\ncd nuance\npip install -e .\n```\n\n## Citation\n\nIf you find *nuance* useful for your research, cite [Garcia et. al 2024](https://ui.adsabs.harvard.edu/abs/2024AJ....167..284G). The BibTeX entry for the paper is:\n\n```\n@ARTICLE{2024AJ....167..284G,\n       author = {{Garcia}, Lionel J. and {Foreman-Mackey}, Daniel and {Murray}, Catriona A. and {Aigrain}, Suzanne and {Feliz}, Dax L. and {Pozuelos}, Francisco J.},\n        title = \"{nuance: Efficient Detection of Planets Transiting Active Stars}\",\n      journal = {\\aj},\n     keywords = {Exoplanet detection methods, Stellar activity, Time series analysis, Gaussian Processes regression, Computational methods, GPU computing, 489, 1580, 1916, 1930, 1965, 1969, Astrophysics - Earth and Planetary Astrophysics, Astrophysics - Instrumentation and Methods for Astrophysics},\n         year = 2024,\n        month = jun,\n       volume = {167},\n       number = {6},\n          eid = {284},\n        pages = {284},\n          doi = {10.3847/1538-3881/ad3cd6},\narchivePrefix = {arXiv},\n       eprint = {2402.06835},\n primaryClass = {astro-ph.EP},\n       adsurl = {https://ui.adsabs.harvard.edu/abs/2024AJ....167..284G},\n      adsnote = {Provided by the SAO/NASA Astrophysics Data System}\n}\n```",
    "bugtrack_url": null,
    "license": null,
    "summary": "Transit signals detection among correlated noises",
    "version": "0.8.1",
    "project_urls": null,
    "split_keywords": [
        "astronomy",
        " exoplanets",
        " jax",
        " transit"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ebd73e3dc916b9c1e89932d0c08fb5f28a290c1c9066ea8f81bd8f2808d708c8",
                "md5": "f73149905cf1171731d30e6f1b9fac7b",
                "sha256": "5a655352168777df01d4a99421a8d707c52978a5c07f731b9b26d73b3aba625c"
            },
            "downloads": -1,
            "filename": "nuance-0.8.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "f73149905cf1171731d30e6f1b9fac7b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 13789,
            "upload_time": "2024-07-31T00:33:58",
            "upload_time_iso_8601": "2024-07-31T00:33:58.729711Z",
            "url": "https://files.pythonhosted.org/packages/eb/d7/3e3dc916b9c1e89932d0c08fb5f28a290c1c9066ea8f81bd8f2808d708c8/nuance-0.8.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "52fe4b20fe32ebd8f78b6154dd45e521f4c0a79b2bc9e2fc994e28f9338f6399",
                "md5": "7a2f6189cfc426b6376a16081c1d5a3a",
                "sha256": "8f64075d28ada298b225dc26bf1061ae25ee0d295f18c821435ed8822736274d"
            },
            "downloads": -1,
            "filename": "nuance-0.8.1.tar.gz",
            "has_sig": false,
            "md5_digest": "7a2f6189cfc426b6376a16081c1d5a3a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 2388898,
            "upload_time": "2024-07-31T00:34:00",
            "upload_time_iso_8601": "2024-07-31T00:34:00.169228Z",
            "url": "https://files.pythonhosted.org/packages/52/fe/4b20fe32ebd8f78b6154dd45e521f4c0a79b2bc9e2fc994e28f9338f6399/nuance-0.8.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-31 00:34:00",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "nuance"
}
        
Elapsed time: 4.76708s