nullval


Namenullval JSON
Version 0.0.2 PyPI version JSON
download
home_pagehttps://github.com/Mukullight/nullval
SummaryA package for the treatment of nullvalues and outliers in your data set using various mathematical approaches
upload_time2024-07-23 10:42:05
maintainerNone
docs_urlNone
authorMukul namagiri
requires_python<4.0.0,>=3.9.19
licenseMIT
keywords finance dataloader outliers_finder nullvalue_finder
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Nullval
This repository contains the required package containing various mathematical \
approaches using different numerical technique


Under construction! Not ready for use yet! Currently experimenting and planning!

Developed by Mukul namagiri

+ This repository contains different kinds of methods for the treament of null values 
and outliers\
Using various kinds of numerical techniques for the ideal replacement of values in your dataframe 
## Accepted format 
+ This module takes **xml, json, csv and excel** and pandas dataframe as input
+ automatically identifies the locations of null values and outliers 
+ ideal values for data imputations 

## Directory structure of the repository


```
nullvalue/
│
├── .gitignore
│
├── nullval/
│ ├── __init__.py
│ ├── cubic_spline_interpolation.py
│ ├── linear_interpolation.py
│ └── loader.py
| |__ polynomial_interpolation.py
| |__ splines_interpolation.py
| |__ trigonometric_interpolation.py
| |__ auto.py
│
├── tests/
│ ├── init.py
│ └── test_lagrange_interpolation.py
| |__ test_linear_interpolation.py
| |__ test_polynomial_interpolation.py
| |__ test_spline_interpolation.py
| |__ test_trigonometric_interpolation.py
│
├── api_reference.md
│
├── pyproject.toml
│
├── README.rst
│
└── README.md
```
## requirements for the package 

They are already added to the toml file but in case 
```
pandas==1.3.3
numpy==1.21.4
tqdm
scikit-learn==0.24.2
seaborn==0.11.2
matplotlib==3.5.1
statsmodels==0.13.0
tensorflow==2.8.0
plotly==5.5.0
```
## Installation

```
pip install nulval
```

# Usage guide
 **loader loads and formats the data and auto fins the ideal solution**
## Step - 1 
```python
from nullval import loader

path = "<enter the default path according to the environment>"
# converts to dataframe
data = loader.auto(path)
# returns the index of the nulls and the outliers 
loader.nulls_and_outs(data)
```

# Advantages and the Disadvantages of each of the method
### Linear interpolation 
#### Advantages
+ Easy to implement and less computational requirements
+ Quick to compute and effective for larger data sets with loads of missing values
+ have more local control, less sensitive to outliers, works well with noisy data, handles discontinous data well
#### Disadvantages
> not good for complex patterns, sharp corners, poor performance for smooth functions, requires higher order derivatives 
### Lagrange interpolation 
+ Straight forward, tries to give the best fit
+ works for equidistant and the non equidistant points, no need to solve linear systems
#### Disadvantages 
> **Runge's phenomenon** for higher degree and the widely spaced points --> oscillations occur at edges of intervals leading to poor approximation
> higher computational costs and does not work for dynamic dataset, higher storage requirements
### Splines interpolation
#### Advantages
+ gives more local control by breaking down the domain into smaller fragments, more precise interpolation
+ smoother interpolation and reduces oscillations, differentiable, piecewise continous 
#### Disadvantages 
> More computataional effort, hard to choose appropriate boundaries, could lead to overfitting, takes significant resources, higher memory usage, beyond range interpolation
### Polynomial interpolation 
#### Advantages 
+ gives the exact fit, provides analytical expression for further theoretical analysis 
+ allows for flexibility in choosing the base polynomial 
#### Disadvantages 
> same as those of lagrange 
### Trigonometric interpolation
#### Advantages
+ Most natural fit for periodic data and capture harmonics well, gives high precision for smooth functions
+ avoids runge phenomenon, fast computation with fft and basis function
#### Disadvantages 
> non periodic data issues, discontinous boundary effects, global nature 












            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Mukullight/nullval",
    "name": "nullval",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0.0,>=3.9.19",
    "maintainer_email": null,
    "keywords": "finance, dataloader, outliers_finder, Nullvalue_finder, ",
    "author": "Mukul namagiri",
    "author_email": "mukulnamagiri1@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/36/4a/35ee261bb544940bd10155afd4fb7552d13804511238c4bdb5ef95820cd2/nullval-0.0.2.tar.gz",
    "platform": null,
    "description": "# Nullval\nThis repository contains the required package containing various mathematical \\\napproaches using different numerical technique\n\n\nUnder construction! Not ready for use yet! Currently experimenting and planning!\n\nDeveloped by Mukul namagiri\n\n+ This repository contains different kinds of methods for the treament of null values \nand outliers\\\nUsing various kinds of numerical techniques for the ideal replacement of values in your dataframe \n## Accepted format \n+ This module takes **xml, json, csv and excel** and pandas dataframe as input\n+ automatically identifies the locations of null values and outliers \n+ ideal values for data imputations \n\n## Directory structure of the repository\n\n\n```\nnullvalue/\n\u2502\n\u251c\u2500\u2500 .gitignore\n\u2502\n\u251c\u2500\u2500 nullval/\n\u2502 \u251c\u2500\u2500 __init__.py\n\u2502 \u251c\u2500\u2500 cubic_spline_interpolation.py\n\u2502 \u251c\u2500\u2500 linear_interpolation.py\n\u2502 \u2514\u2500\u2500 loader.py\n| |__ polynomial_interpolation.py\n| |__ splines_interpolation.py\n| |__ trigonometric_interpolation.py\n| |__ auto.py\n\u2502\n\u251c\u2500\u2500 tests/\n\u2502 \u251c\u2500\u2500 init.py\n\u2502 \u2514\u2500\u2500 test_lagrange_interpolation.py\n| |__ test_linear_interpolation.py\n| |__ test_polynomial_interpolation.py\n| |__ test_spline_interpolation.py\n| |__ test_trigonometric_interpolation.py\n\u2502\n\u251c\u2500\u2500 api_reference.md\n\u2502\n\u251c\u2500\u2500 pyproject.toml\n\u2502\n\u251c\u2500\u2500 README.rst\n\u2502\n\u2514\u2500\u2500 README.md\n```\n## requirements for the package \n\nThey are already added to the toml file but in case \n```\npandas==1.3.3\nnumpy==1.21.4\ntqdm\nscikit-learn==0.24.2\nseaborn==0.11.2\nmatplotlib==3.5.1\nstatsmodels==0.13.0\ntensorflow==2.8.0\nplotly==5.5.0\n```\n## Installation\n\n```\npip install nulval\n```\n\n# Usage guide\n **loader loads and formats the data and auto fins the ideal solution**\n## Step - 1 \n```python\nfrom nullval import loader\n\npath = \"<enter the default path according to the environment>\"\n# converts to dataframe\ndata = loader.auto(path)\n# returns the index of the nulls and the outliers \nloader.nulls_and_outs(data)\n```\n\n# Advantages and the Disadvantages of each of the method\n### Linear interpolation \n#### Advantages\n+ Easy to implement and less computational requirements\n+ Quick to compute and effective for larger data sets with loads of missing values\n+ have more local control, less sensitive to outliers, works well with noisy data, handles discontinous data well\n#### Disadvantages\n> not good for complex patterns, sharp corners, poor performance for smooth functions, requires higher order derivatives \n### Lagrange interpolation \n+ Straight forward, tries to give the best fit\n+ works for equidistant and the non equidistant points, no need to solve linear systems\n#### Disadvantages \n> **Runge's phenomenon** for higher degree and the widely spaced points --> oscillations occur at edges of intervals leading to poor approximation\n> higher computational costs and does not work for dynamic dataset, higher storage requirements\n### Splines interpolation\n#### Advantages\n+ gives more local control by breaking down the domain into smaller fragments, more precise interpolation\n+ smoother interpolation and reduces oscillations, differentiable, piecewise continous \n#### Disadvantages \n> More computataional effort, hard to choose appropriate boundaries, could lead to overfitting, takes significant resources, higher memory usage, beyond range interpolation\n### Polynomial interpolation \n#### Advantages \n+ gives the exact fit, provides analytical expression for further theoretical analysis \n+ allows for flexibility in choosing the base polynomial \n#### Disadvantages \n> same as those of lagrange \n### Trigonometric interpolation\n#### Advantages\n+ Most natural fit for periodic data and capture harmonics well, gives high precision for smooth functions\n+ avoids runge phenomenon, fast computation with fft and basis function\n#### Disadvantages \n> non periodic data issues, discontinous boundary effects, global nature \n\n\n\n\n\n\n\n\n\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A package for the treatment of nullvalues and outliers in your data set using various mathematical approaches ",
    "version": "0.0.2",
    "project_urls": {
        "Homepage": "https://github.com/Mukullight/nullval",
        "Repository": "https://github.com/Mukullight/nullval"
    },
    "split_keywords": [
        "finance",
        " dataloader",
        " outliers_finder",
        " nullvalue_finder",
        " "
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f9bb3445dc3568fc135eb19d0d3aa52316148b5304a97ddbf03cbc362ae5500c",
                "md5": "05b2f65e4fd63a5e117b5f736ef17cc9",
                "sha256": "5f39ad202e3f2f8bacaea748dde1cee7225c9ed9f9ff809a471e7bbcc441eb5c"
            },
            "downloads": -1,
            "filename": "nullval-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "05b2f65e4fd63a5e117b5f736ef17cc9",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0.0,>=3.9.19",
            "size": 13338,
            "upload_time": "2024-07-23T10:42:03",
            "upload_time_iso_8601": "2024-07-23T10:42:03.492172Z",
            "url": "https://files.pythonhosted.org/packages/f9/bb/3445dc3568fc135eb19d0d3aa52316148b5304a97ddbf03cbc362ae5500c/nullval-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "364a35ee261bb544940bd10155afd4fb7552d13804511238c4bdb5ef95820cd2",
                "md5": "123f8632377fd8f7c11615cd9b7a1fac",
                "sha256": "8f77a446b072af6ebf054d01ae4a529d7621282193624e86fb9f08bf0622ca5c"
            },
            "downloads": -1,
            "filename": "nullval-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "123f8632377fd8f7c11615cd9b7a1fac",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0.0,>=3.9.19",
            "size": 9640,
            "upload_time": "2024-07-23T10:42:05",
            "upload_time_iso_8601": "2024-07-23T10:42:05.569884Z",
            "url": "https://files.pythonhosted.org/packages/36/4a/35ee261bb544940bd10155afd4fb7552d13804511238c4bdb5ef95820cd2/nullval-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-23 10:42:05",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Mukullight",
    "github_project": "nullval",
    "github_not_found": true,
    "lcname": "nullval"
}
        
Elapsed time: 0.42117s