# Numeric Gradients
Small library for computing gradients of functions that are commonly used in Machine Learning and Deep Learning.
## Acknowledgements
This library is originated from [micrograd](https://github.com/karpathy/micrograd) implementation and extended to support more functions.
## Installation
```bash
pip install numeric-grad
```
Raw data
{
"_id": null,
"home_page": "https://github.com/anil-gurbuz/Numeric-grad",
"name": "numeric-grad",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "Deep learning,Machine Learning,Gradient,Backpropagation",
"author": "Anil Gurbuz",
"author_email": "anlgrbz91@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/f3/6b/6dc5d8015ba8a30e74b5196a647e77be695c05e83389f8918aac2b49660b/numeric_grad-0.0.4.tar.gz",
"platform": null,
"description": "# Numeric Gradients\r\nSmall library for computing gradients of functions that are commonly used in Machine Learning and Deep Learning.\r\n\r\n\r\n## Acknowledgements\r\nThis library is originated from [micrograd](https://github.com/karpathy/micrograd) implementation and extended to support more functions.\r\n\r\n\r\n## Installation\r\n```bash\r\npip install numeric-grad\r\n```\r\n\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Small library for computing gradients of functions that are commonly used in Machine Learning and Deep Learning.",
"version": "0.0.4",
"split_keywords": [
"deep learning",
"machine learning",
"gradient",
"backpropagation"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "c1a0edcdb1eacf970d2476d9ec5a61915f906e63732c55c4c374f990f4a10f21",
"md5": "02822783d08943e54f52c04e3f8f0364",
"sha256": "c26766deddf2cc3f712496b84c95d711dd2735fa2b3542737b6083a5ef47b7a8"
},
"downloads": -1,
"filename": "numeric_grad-0.0.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "02822783d08943e54f52c04e3f8f0364",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 3802,
"upload_time": "2023-03-16T04:28:20",
"upload_time_iso_8601": "2023-03-16T04:28:20.889746Z",
"url": "https://files.pythonhosted.org/packages/c1/a0/edcdb1eacf970d2476d9ec5a61915f906e63732c55c4c374f990f4a10f21/numeric_grad-0.0.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f36b6dc5d8015ba8a30e74b5196a647e77be695c05e83389f8918aac2b49660b",
"md5": "23d11953d19f6a39c4bc7bbf0d765f07",
"sha256": "e0e8b9d4c343698f7c81d8ac7bbdcaf3d5c7accc3ad55dac39fa352d2006074c"
},
"downloads": -1,
"filename": "numeric_grad-0.0.4.tar.gz",
"has_sig": false,
"md5_digest": "23d11953d19f6a39c4bc7bbf0d765f07",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 3617,
"upload_time": "2023-03-16T04:28:22",
"upload_time_iso_8601": "2023-03-16T04:28:22.931800Z",
"url": "https://files.pythonhosted.org/packages/f3/6b/6dc5d8015ba8a30e74b5196a647e77be695c05e83389f8918aac2b49660b/numeric_grad-0.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-03-16 04:28:22",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "anil-gurbuz",
"github_project": "Numeric-grad",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "torch",
"specs": [
[
">=",
"1.13.1"
]
]
}
],
"lcname": "numeric-grad"
}