numpy


Namenumpy JSON
Version 1.14.2 PyPI version JSON
download
home_pagehttp://www.numpy.org
SummaryNumPy: array processing for numbers, strings, records, and objects.
upload_time2018-03-12 18:06:08
maintainer
docs_urlNone
authorNumPy Developers
requires_python>=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*
licenseBSD
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            NumPy is a general-purpose array-processing package designed to
efficiently manipulate large multi-dimensional arrays of arbitrary
records without sacrificing too much speed for small multi-dimensional
arrays.  NumPy is built on the Numeric code base and adds features
introduced by numarray as well as an extended C-API and the ability to
create arrays of arbitrary type which also makes NumPy suitable for
interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform,
basic linear algebra and random number generation.

All numpy wheels distributed from pypi are BSD licensed.

Windows wheels are linked against the ATLAS BLAS / LAPACK library, restricted
to SSE2 instructions, so may not give optimal linear algebra performance for
your machine. See http://docs.scipy.org/doc/numpy/user/install.html for
alternatives.




            

Raw data

            {
    "maintainer": "", 
    "docs_url": null, 
    "requires_python": ">=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*", 
    "maintainer_email": "", 
    "cheesecake_code_kwalitee_id": null, 
    "keywords": "", 
    "upload_time": "2018-03-12 18:06:08", 
    "author": "NumPy Developers", 
    "home_page": "http://www.numpy.org", 
    "download_url": "https://pypi.python.org/packages/0b/66/86185402ee2d55865c675c06a5cfef742e39f4635a4ce1b1aefd20711c13/numpy-1.14.2.zip", 
    "platform": "Windows", 
    "version": "1.14.2", 
    "cheesecake_documentation_id": null, 
    "description": "NumPy is a general-purpose array-processing package designed to\nefficiently manipulate large multi-dimensional arrays of arbitrary\nrecords without sacrificing too much speed for small multi-dimensional\narrays.  NumPy is built on the Numeric code base and adds features\nintroduced by numarray as well as an extended C-API and the ability to\ncreate arrays of arbitrary type which also makes NumPy suitable for\ninterfacing with general-purpose data-base applications.\n\nThere are also basic facilities for discrete fourier transform,\nbasic linear algebra and random number generation.\n\nAll numpy wheels distributed from pypi are BSD licensed.\n\nWindows wheels are linked against the ATLAS BLAS / LAPACK library, restricted\nto SSE2 instructions, so may not give optimal linear algebra performance for\nyour machine. See http://docs.scipy.org/doc/numpy/user/install.html for\nalternatives.\n\n\n\n", 
    "lcname": "numpy", 
    "bugtrack_url": "", 
    "github": false, 
    "name": "numpy", 
    "license": "BSD", 
    "summary": "NumPy: array processing for numbers, strings, records, and objects.", 
    "split_keywords": [], 
    "author_email": "numpy-discussion@python.org", 
    "urls": [
        {
            "has_sig": true, 
            "upload_time": "2018-03-12T17:49:21", 
            "comment_text": "", 
            "python_version": "cp27", 
            "url": "https://pypi.python.org/packages/55/4d/6fde74ef447202a20e4c1be37475f515d1554d4d677bfe619e408a57c1be/numpy-1.14.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", 
            "md5_digest": "9bb06966218d0f3d0a25a6155c7d2439", 
            "downloads": 0, 
            "filename": "numpy-1.14.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", 
            "packagetype": "bdist_wheel", 
            "path": "55/4d/6fde74ef447202a20e4c1be37475f515d1554d4d677bfe619e408a57c1be/numpy-1.14.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", 
            "size": 4710511
        }, 
        {
            "has_sig": true, 
            "upload_time": "2018-03-12T17:49:56", 
            "comment_text": "", 
            "python_version": "cp27", 
            "url": "https://pypi.python.org/packages/87/5c/61eb6a13bd1d43ee0d445fe6250e26ae696ffe4dabd59711f5e6c9ae6d49/numpy-1.14.2-cp27-cp27m-manylinux1_i686.whl", 
            "md5_digest": "b8a260b915d44475f4385fed4c6a7ec8", 
            "downloads": 0, 
            "filename": "numpy-1.14.2-cp27-cp27m-manylinux1_i686.whl", 
            "packagetype": "bdist_wheel", 
            "path": "87/5c/61eb6a13bd1d43ee0d445fe6250e26ae696ffe4dabd59711f5e6c9ae6d49/numpy-1.14.2-cp27-cp27m-manylinux1_i686.whl", 
            "size": 8714979
        }, 
        {
            "has_sig": true, 
            "upload_time": "2018-03-12T17:50:48", 
            "comment_text": "", 
            "python_version": "cp27", 
            "url": "https://pypi.python.org/packages/b9/84/513dc190113249244b3027ffebc6bf8ddcce1843cc471620ea179dc5613c/numpy-1.14.2-cp27-cp27m-manylinux1_x86_64.whl", 
            "md5_digest": "7733aa702cebb5b0469b820ea9cfc293", 
            "downloads": 0, 
            "filename": "numpy-1.14.2-cp27-cp27m-manylinux1_x86_64.whl", 
            "packagetype": "bdist_wheel", 
            "path": "b9/84/513dc190113249244b3027ffebc6bf8ddcce1843cc471620ea179dc5613c/numpy-1.14.2-cp27-cp27m-manylinux1_x86_64.whl", 
            "size": 12140658
        }, 
        {
            "has_sig": true, 
            "upload_time": "2018-03-12T17:51:33", 
            "comment_text": "", 
            "python_version": "cp27", 
            "url": "https://pypi.python.org/packages/2b/0b/efcec0be075024207e04032961f6b531166d4e63ce3b245ba3cd05d5ffdf/numpy-1.14.2-cp27-cp27mu-manylinux1_i686.whl", 
            "md5_digest": "ef1065f3ecd08054eca9c6c14a2e3518", 
            "downloads": 0, 
            "filename": "numpy-1.14.2-cp27-cp27mu-manylinux1_i686.whl", 
            "packagetype": "bdist_wheel", 
            "path": "2b/0b/efcec0be075024207e04032961f6b531166d4e63ce3b245ba3cd05d5ffdf/numpy-1.14.2-cp27-cp27mu-manylinux1_i686.whl", 
            "size": 8714908
        }, 
        {
            "has_sig": true, 
            "upload_time": "2018-03-12T17:52:26", 
            "comment_text": "", 
            "python_version": "cp27", 
            "url": "https://pypi.python.org/packages/76/4d/418dda252cf92bad00ab82d6b2a856e7843b47a5c2f084aed34b14b67d64/numpy-1.14.2-cp27-cp27mu-manylinux1_x86_64.whl", 
            "md5_digest": "1227a63fcc8ce91a75d2ab006d406df7", 
            "downloads": 0, 
            "filename": "numpy-1.14.2-cp27-cp27mu-manylinux1_x86_64.whl", 
            "packagetype": "bdist_wheel", 
            "path": "76/4d/418dda252cf92bad00ab82d6b2a856e7843b47a5c2f084aed34b14b67d64/numpy-1.14.2-cp27-cp27mu-manylinux1_x86_64.whl", 
            "size": 12140329
        }, 
        {
            "has_sig": true, 
            "upload_time": "2018-03-12T17:53:11", 
            "comment_text": "", 
            "python_version": "cp27", 
            "url": "https://pypi.python.org/packages/2e/91/504e434d3b95d943caab926f33dee5691768fbb622bc290a0fa6df77e1d8/numpy-1.14.2-cp27-none-win32.whl", 
            "md5_digest": "6ac633c46c13dd2af93761460d63436e", 
            "downloads": 0, 
            "filename": "numpy-1.14.2-cp27-none-win32.whl", 
            "packagetype": "bdist_wheel", 
            "path": "2e/91/504e434d3b95d943caab926f33dee5691768fbb622bc290a0fa6df77e1d8/numpy-1.14.2-cp27-none-win32.whl", 
            "size": 9789025
        }, 
        {
            "has_sig": true, 
            "upload_time": "2018-03-12T17:54:06", 
            "comment_text": "", 
            "python_version": "cp27", 
            "url": "https://pypi.python.org/packages/64/f2/2aa3b3274abe211b773e8a6d8801e19a9451646c213a333359c6a600484a/numpy-1.14.2-cp27-none-win_amd64.whl", 
            "md5_digest": "187a94722b84d65cc3a9ecfce27ee3b2", 
            "downloads": 0, 
            "filename": "numpy-1.14.2-cp27-none-win_amd64.whl", 
            "packagetype": "bdist_wheel", 
            "path": "64/f2/2aa3b3274abe211b773e8a6d8801e19a9451646c213a333359c6a600484a/numpy-1.14.2-cp27-none-win_amd64.whl", 
            "size": 13340569
        }, 
        {
            "has_sig": true, 
            "upload_time": "2018-03-12T17:54:33", 
            "comment_text": "", 
            "python_version": "cp34", 
            "url": "https://pypi.python.org/packages/60/0b/82ec3a2f9018e282e1f890950ad1d23c965785f3684a9fbf57b27a85042d/numpy-1.14.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", 
            "md5_digest": "580340cfe4a14f8a9e1d781d7b42955b", 
            "downloads": 0, 
            "filename": "numpy-1.14.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", 
            "packagetype": "bdist_wheel", 
            "path": "60/0b/82ec3a2f9018e282e1f890950ad1d23c965785f3684a9fbf57b27a85042d/numpy-1.14.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", 
            "size": 4675250
        }, 
        {
            "has_sig": true, 
            "upload_time": "2018-03-12T17:55:12", 
            "comment_text": "", 
            "python_version": "cp34", 
            "url": "https://pypi.python.org/packages/ac/d7/30fcb52c547e2f1a179b6fd166ee0faa8b5ef49555ae4da4cb4bdbd81819/numpy-1.14.2-cp34-cp34m-manylinux1_i686.whl", 
            "md5_digest": "7f38fb83008ed4bb8217840ac27aeba4", 
            "downloads": 0, 
            "filename": "numpy-1.14.2-cp34-cp34m-manylinux1_i686.whl", 
            "packagetype": "bdist_wheel", 
            "path": "ac/d7/30fcb52c547e2f1a179b6fd166ee0faa8b5ef49555ae4da4cb4bdbd81819/numpy-1.14.2-cp34-cp34m-manylinux1_i686.whl", 
            "size": 8714908
        }, 
        {
            "has_sig": true, 
            "upload_time": "2018-03-12T17:56:00", 
            "comment_text": "", 
            "python_version": "cp34", 
            "url": "https://pypi.python.org/packages/7e/09/c5a2822aa55a9cf89c6398780bbcaa1fede0650cdccd55bc89a8548c0d7a/numpy-1.14.2-cp34-cp34m-manylinux1_x86_64.whl", 
            "md5_digest": "cbe383ad27db21767b6ffdd943e3df9c", 
            "downloads": 0, 
            "filename": "numpy-1.14.2-cp34-cp34m-manylinux1_x86_64.whl", 
            "packagetype": "bdist_wheel", 
            "path": "7e/09/c5a2822aa55a9cf89c6398780bbcaa1fede0650cdccd55bc89a8548c0d7a/numpy-1.14.2-cp34-cp34m-manylinux1_x86_64.whl", 
            "size": 12132820
        }, 
        {
            "has_sig": true, 
            "upload_time": "2018-03-12T17:56:50", 
            "comment_text": "", 
            "python_version": "cp34", 
            "url": "https://pypi.python.org/packages/7e/b4/7fc423cbbb81e7d51dc5a740dcf9f1bc96946118dddd14a6b287a935bed0/numpy-1.14.2-cp34-none-win32.whl", 
            "md5_digest": "350a1e0f0c825ffa1de264108c648482", 
            "downloads": 0, 
            "filename": "numpy-1.14.2-cp34-none-win32.whl", 
            "packagetype": "bdist_wheel", 
            "path": "7e/b4/7fc423cbbb81e7d51dc5a740dcf9f1bc96946118dddd14a6b287a935bed0/numpy-1.14.2-cp34-none-win32.whl", 
            "size": 9807606
        }, 
        {
            "has_sig": true, 
            "upload_time": "2018-03-12T17:57:47", 
            "comment_text": "", 
            "python_version": "cp34", 
            "url": "https://pypi.python.org/packages/1c/26/9dd55ab18f78ed333f757ce677cd7ddb6650876ec40b468be4cc9e6915b5/numpy-1.14.2-cp34-none-win_amd64.whl", 
            "md5_digest": "ececd9b8891d801d4a968c2ec5eac7bb", 
            "downloads": 0, 
            "filename": "numpy-1.14.2-cp34-none-win_amd64.whl", 
            "packagetype": "bdist_wheel", 
            "path": "1c/26/9dd55ab18f78ed333f757ce677cd7ddb6650876ec40b468be4cc9e6915b5/numpy-1.14.2-cp34-none-win_amd64.whl", 
            "size": 13339361
        }, 
        {
            "has_sig": true, 
            "upload_time": "2018-03-12T17:58:43", 
            "comment_text": "", 
            "python_version": "cp35", 
            "url": "https://pypi.python.org/packages/5f/20/fe66080957a74381420c445c76a3e33dc30b6c340bad58eb161f182b42ad/numpy-1.14.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", 
            "md5_digest": "8a74bb1f94ad8c1ad8f37e73f967b850", 
            "downloads": 0, 
            "filename": "numpy-1.14.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", 
            "packagetype": "bdist_wheel", 
            "path": "5f/20/fe66080957a74381420c445c76a3e33dc30b6c340bad58eb161f182b42ad/numpy-1.14.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", 
            "size": 4675302
        }, 
        {
            "has_sig": true, 
            "upload_time": "2018-03-12T17:59:19", 
            "comment_text": "", 
            "python_version": "cp35", 
            "url": "https://pypi.python.org/packages/7b/b7/ad7d216dbeafa35e9a8daf9f502db70f56e5bba6e275228197e2b9eff1db/numpy-1.14.2-cp35-cp35m-manylinux1_i686.whl", 
            "md5_digest": "c1231d7e7fc52c09dff9a529ad228818", 
            "downloads": 0, 
            "filename": "numpy-1.14.2-cp35-cp35m-manylinux1_i686.whl", 
            "packagetype": "bdist_wheel", 
            "path": "7b/b7/ad7d216dbeafa35e9a8daf9f502db70f56e5bba6e275228197e2b9eff1db/numpy-1.14.2-cp35-cp35m-manylinux1_i686.whl", 
            "size": 8714220
        }, 
        {
            "has_sig": true, 
            "upload_time": "2018-03-12T18:00:09", 
            "comment_text": "", 
            "python_version": "cp35", 
            "url": "https://pypi.python.org/packages/ea/31/991207e6234b46a1228be970735ead9d6f06a298917d6f718c5e32e835bb/numpy-1.14.2-cp35-cp35m-manylinux1_x86_64.whl", 
            "md5_digest": "ef57856bf6dade82922ab58922756dd0", 
            "downloads": 0, 
            "filename": "numpy-1.14.2-cp35-cp35m-manylinux1_x86_64.whl", 
            "packagetype": "bdist_wheel", 
            "path": "ea/31/991207e6234b46a1228be970735ead9d6f06a298917d6f718c5e32e835bb/numpy-1.14.2-cp35-cp35m-manylinux1_x86_64.whl", 
            "size": 12136821
        }, 
        {
            "has_sig": true, 
            "upload_time": "2018-03-12T18:00:49", 
            "comment_text": "", 
            "python_version": "cp35", 
            "url": "https://pypi.python.org/packages/13/65/5681e722cb455c8f5aea63197becd8f37c9afae05f0bd499996384e60640/numpy-1.14.2-cp35-none-win32.whl", 
            "md5_digest": "8c98ab081112832e3a7faca624598119", 
            "downloads": 0, 
            "filename": "numpy-1.14.2-cp35-none-win32.whl", 
            "packagetype": "bdist_wheel", 
            "path": "13/65/5681e722cb455c8f5aea63197becd8f37c9afae05f0bd499996384e60640/numpy-1.14.2-cp35-none-win32.whl", 
            "size": 9786767
        }, 
        {
            "has_sig": true, 
            "upload_time": "2018-03-12T18:01:41", 
            "comment_text": "", 
            "python_version": "cp35", 
            "url": "https://pypi.python.org/packages/46/eb/846d92fed0ef6dbc1906c198e3e5475f1d9f7954ce9648c05c0dfddc36b9/numpy-1.14.2-cp35-none-win_amd64.whl", 
            "md5_digest": "2652e9660be5d074224d14436504f008", 
            "downloads": 0, 
            "filename": "numpy-1.14.2-cp35-none-win_amd64.whl", 
            "packagetype": "bdist_wheel", 
            "path": "46/eb/846d92fed0ef6dbc1906c198e3e5475f1d9f7954ce9648c05c0dfddc36b9/numpy-1.14.2-cp35-none-win_amd64.whl", 
            "size": 13365713
        }, 
        {
            "has_sig": true, 
            "upload_time": "2018-03-12T18:02:05", 
            "comment_text": "", 
            "python_version": "cp36", 
            "url": "https://pypi.python.org/packages/a0/df/fa637677800e6702a57ef09e1d62e42aec3f598fb235f897155d146f2f59/numpy-1.14.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", 
            "md5_digest": "1cdb6cf8d60dfbe99f60639dac38471e", 
            "downloads": 0, 
            "filename": "numpy-1.14.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", 
            "packagetype": "bdist_wheel", 
            "path": "a0/df/fa637677800e6702a57ef09e1d62e42aec3f598fb235f897155d146f2f59/numpy-1.14.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl", 
            "size": 4703227
        }, 
        {
            "has_sig": true, 
            "upload_time": "2018-03-12T18:02:41", 
            "comment_text": "", 
            "python_version": "cp36", 
            "url": "https://pypi.python.org/packages/8a/23/dd4bef28fe2ee3c8a195e28e5a41792e14a1fae007c7013ecef4a0ab9727/numpy-1.14.2-cp36-cp36m-manylinux1_i686.whl", 
            "md5_digest": "b11c80344b84853b7a24acc51bbe4945", 
            "downloads": 0, 
            "filename": "numpy-1.14.2-cp36-cp36m-manylinux1_i686.whl", 
            "packagetype": "bdist_wheel", 
            "path": "8a/23/dd4bef28fe2ee3c8a195e28e5a41792e14a1fae007c7013ecef4a0ab9727/numpy-1.14.2-cp36-cp36m-manylinux1_i686.whl", 
            "size": 8739578
        }, 
        {
            "has_sig": true, 
            "upload_time": "2018-03-12T18:03:39", 
            "comment_text": "", 
            "python_version": "cp36", 
            "url": "https://pypi.python.org/packages/6e/dc/92c0f670e7b986829fc92c4c0208edb9d72908149da38ecda50d816ea057/numpy-1.14.2-cp36-cp36m-manylinux1_x86_64.whl", 
            "md5_digest": "65c3802c0f25f2d26aa784433643f655", 
            "downloads": 0, 
            "filename": "numpy-1.14.2-cp36-cp36m-manylinux1_x86_64.whl", 
            "packagetype": "bdist_wheel", 
            "path": "6e/dc/92c0f670e7b986829fc92c4c0208edb9d72908149da38ecda50d816ea057/numpy-1.14.2-cp36-cp36m-manylinux1_x86_64.whl", 
            "size": 12159803
        }, 
        {
            "has_sig": true, 
            "upload_time": "2018-03-12T18:04:19", 
            "comment_text": "", 
            "python_version": "cp36", 
            "url": "https://pypi.python.org/packages/05/3f/39ec9e88b0a14930c70722f832861c2ef7bd4bbee9ed8d586c0c1dcb531b/numpy-1.14.2-cp36-none-win32.whl", 
            "md5_digest": "8f9986b323d4215925d6cfa1cd1bc14d", 
            "downloads": 0, 
            "filename": "numpy-1.14.2-cp36-none-win32.whl", 
            "packagetype": "bdist_wheel", 
            "path": "05/3f/39ec9e88b0a14930c70722f832861c2ef7bd4bbee9ed8d586c0c1dcb531b/numpy-1.14.2-cp36-none-win32.whl", 
            "size": 9797037
        }, 
        {
            "has_sig": true, 
            "upload_time": "2018-03-12T18:05:14", 
            "comment_text": "", 
            "python_version": "cp36", 
            "url": "https://pypi.python.org/packages/30/70/cd94a1655d082b8f024b21af1eb13dd0f3035ffe78ff43d4ff9bb97baa5f/numpy-1.14.2-cp36-none-win_amd64.whl", 
            "md5_digest": "9d78ceef101313f49fd0b8fed25d889c", 
            "downloads": 0, 
            "filename": "numpy-1.14.2-cp36-none-win_amd64.whl", 
            "packagetype": "bdist_wheel", 
            "path": "30/70/cd94a1655d082b8f024b21af1eb13dd0f3035ffe78ff43d4ff9bb97baa5f/numpy-1.14.2-cp36-none-win_amd64.whl", 
            "size": 13375621
        }, 
        {
            "has_sig": true, 
            "upload_time": "2018-03-12T18:06:08", 
            "comment_text": "", 
            "python_version": "source", 
            "url": "https://pypi.python.org/packages/0b/66/86185402ee2d55865c675c06a5cfef742e39f4635a4ce1b1aefd20711c13/numpy-1.14.2.zip", 
            "md5_digest": "080f01a19707cf467393e426382c7619", 
            "downloads": 0, 
            "filename": "numpy-1.14.2.zip", 
            "packagetype": "sdist", 
            "path": "0b/66/86185402ee2d55865c675c06a5cfef742e39f4635a4ce1b1aefd20711c13/numpy-1.14.2.zip", 
            "size": 4891884
        }
    ], 
    "_id": null, 
    "cheesecake_installability_id": null
}