numpynet


Namenumpynet JSON
Version 0.1.0 PyPI version JSON
download
home_pagehttps://github.com/klima7/CNN-From-Scratch
SummarySimple neural network implementation with numpy
upload_time2024-03-17 23:03:26
maintainer
docs_urlNone
authorŁukasz Klimkiewicz
requires_python
licenseMIT
keywords neural network numpy simple convolution dense
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # numpynet
Convolutional Neural Network written from scratch using numpy with API similar to tensorflow. Library was compared with tensorflow versions of network (`demo` directory) and achieved very close results.

## Implemented Elements

### Layers
- `InputLayer`
- `DenseLayer`
- `BiasLayer`
- `ActivationLayer (relu, leaky reLu, sigmoid, tanh, sin)`
- `DropoutLayer`
- `FlattenLayer`
- `Conv2DLayer (with bias & stride)`
- `Pool2DLayer (max, min)`
- `Padding2DLayer`
- `Crop2DLayer`
- `SoftmaxLayer`

### Losses
- `MSE`
- `CCE`

### Initializers
- `ConstantInitializer`
- `RandomNormalInitializer`
- `RandomUniformInitializer`
- `GlorotUniformInitialization`

### Metrics
- `CategoricalAccuracy`

### Callbacks
- `ModelCheckpoint`
- `EarlyStopping`

## Usage Example

### Definition
```
layers = [
    numpynet.layers.InputLayer((28, 28, 1)),
    numpynet.layers.Conv2DLayer(32, kernel_size=3, stride=1),
    numpynet.layers.ActivationLayer('relu'),
    numpynet.layers.FlattenLayer(),
    numpynet.layers.DenseLayer(128),
    numpynet.layers.BiasLayer(),
    numpynet.layers.ActivationLayer('relu'),
    numpynet.layers.DropoutLayer(0.5),
    numpynet.layers.DenseLayer(10),
    numpynet.layers.BiasLayer(),
    numpynet.layers.SoftmaxLayer(),
]

model = numpynet.network.Sequential(layers)
```

### Compilation
```
model.compile(
    loss='cce',
    metrics=['categorical_accuracy']
)
```

### Fitting
```
checkpoint_callback = numpynet.callbacks.ModelCheckpoint('checkpoint.dat')

history = model.fit(
    train_x,
    train_y,
    validation_data=(test_x, test_y),
    learning_rate=0.001,
    epochs=10,
    callbacks=[checkpoint_callback],
)
```

### Predicting
```
predictions = model.predict(test_x)
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/klima7/CNN-From-Scratch",
    "name": "numpynet",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "neural,network,numpy,simple,convolution,dense",
    "author": "\u0141ukasz Klimkiewicz",
    "author_email": "pypi@mail.ukasz.com",
    "download_url": "",
    "platform": null,
    "description": "# numpynet\r\nConvolutional Neural Network written from scratch using numpy with API similar to tensorflow. Library was compared with tensorflow versions of network (`demo` directory) and achieved very close results.\r\n\r\n## Implemented Elements\r\n\r\n### Layers\r\n- `InputLayer`\r\n- `DenseLayer`\r\n- `BiasLayer`\r\n- `ActivationLayer (relu, leaky reLu, sigmoid, tanh, sin)`\r\n- `DropoutLayer`\r\n- `FlattenLayer`\r\n- `Conv2DLayer (with bias & stride)`\r\n- `Pool2DLayer (max, min)`\r\n- `Padding2DLayer`\r\n- `Crop2DLayer`\r\n- `SoftmaxLayer`\r\n\r\n### Losses\r\n- `MSE`\r\n- `CCE`\r\n\r\n### Initializers\r\n- `ConstantInitializer`\r\n- `RandomNormalInitializer`\r\n- `RandomUniformInitializer`\r\n- `GlorotUniformInitialization`\r\n\r\n### Metrics\r\n- `CategoricalAccuracy`\r\n\r\n### Callbacks\r\n- `ModelCheckpoint`\r\n- `EarlyStopping`\r\n\r\n## Usage Example\r\n\r\n### Definition\r\n```\r\nlayers = [\r\n    numpynet.layers.InputLayer((28, 28, 1)),\r\n    numpynet.layers.Conv2DLayer(32, kernel_size=3, stride=1),\r\n    numpynet.layers.ActivationLayer('relu'),\r\n    numpynet.layers.FlattenLayer(),\r\n    numpynet.layers.DenseLayer(128),\r\n    numpynet.layers.BiasLayer(),\r\n    numpynet.layers.ActivationLayer('relu'),\r\n    numpynet.layers.DropoutLayer(0.5),\r\n    numpynet.layers.DenseLayer(10),\r\n    numpynet.layers.BiasLayer(),\r\n    numpynet.layers.SoftmaxLayer(),\r\n]\r\n\r\nmodel = numpynet.network.Sequential(layers)\r\n```\r\n\r\n### Compilation\r\n```\r\nmodel.compile(\r\n    loss='cce',\r\n    metrics=['categorical_accuracy']\r\n)\r\n```\r\n\r\n### Fitting\r\n```\r\ncheckpoint_callback = numpynet.callbacks.ModelCheckpoint('checkpoint.dat')\r\n\r\nhistory = model.fit(\r\n    train_x,\r\n    train_y,\r\n    validation_data=(test_x, test_y),\r\n    learning_rate=0.001,\r\n    epochs=10,\r\n    callbacks=[checkpoint_callback],\r\n)\r\n```\r\n\r\n### Predicting\r\n```\r\npredictions = model.predict(test_x)\r\n```\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Simple neural network implementation with numpy",
    "version": "0.1.0",
    "project_urls": {
        "Homepage": "https://github.com/klima7/CNN-From-Scratch"
    },
    "split_keywords": [
        "neural",
        "network",
        "numpy",
        "simple",
        "convolution",
        "dense"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cbacdf4552feb943c8508eeb2af1463e51e2cdc5703bf13463c10d3250bcc27c",
                "md5": "666ba8fa30c7fad5d10f7a3275e64632",
                "sha256": "b30ea985b5efb1a113ccecc1640f3d7e105859ae70274ca46c9ff8957beb53a0"
            },
            "downloads": -1,
            "filename": "numpynet-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "666ba8fa30c7fad5d10f7a3275e64632",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 19057,
            "upload_time": "2024-03-17T23:03:26",
            "upload_time_iso_8601": "2024-03-17T23:03:26.376877Z",
            "url": "https://files.pythonhosted.org/packages/cb/ac/df4552feb943c8508eeb2af1463e51e2cdc5703bf13463c10d3250bcc27c/numpynet-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-17 23:03:26",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "klima7",
    "github_project": "CNN-From-Scratch",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "numpynet"
}
        
Elapsed time: 0.42525s