Name | numpythia JSON |
Version |
1.2.0
JSON |
| download |
home_page | http://github.com/scikit-hep/numpythia |
Summary | The interface between PYTHIA and NumPy |
upload_time | 2020-11-25 23:43:10 |
maintainer | the Scikit-HEP admins |
docs_url | None |
author | |
requires_python | >=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.* |
license | GPLv3 |
keywords |
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
.. -*- mode: rst -*-
numpythia: The interface between PYTHIA and NumPy
=================================================
.. image:: https://img.shields.io/pypi/v/numpythia.svg
:target: https://pypi.python.org/pypi/numpythia
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.1471492.svg
:target: https://doi.org/10.5281/zenodo.1471492
.. image:: https://github.com/scikit-hep/numpythia/workflows/Main/badge.svg?branch=master
:target: https://github.com/scikit-hep/numpythia/actions
:alt: Test status
.. image:: https://dev.azure.com/scikit-hep/numpythia/_apis/build/status/scikit-hep.pyjet?branchName=master
:target: https://dev.azure.com/scikit-hep/numpythia/_build/latest?definitionId=9&branchName=master
:alt: Wheel builds
numpythia provides an interface between `PYTHIA
<http://home.thep.lu.se/Pythia/>`_ and `NumPy
<http://www.numpy.org/>`_ allowing you to generate events as NumPy arrays of
particle four-momenta. By default numpythia only depends on NumPy and builds
internal copies of the PYTHIA and `HepMC <http://hepmc.web.cern.ch/hepmc/>`_
source code.
Standalone Installation
-----------------------
To simply use the built-in PYTHIA and HepMC::
pip install -v numpythia
And you're good to go!
Support for building against an external PYTHIA is on the wishlist.
Note that if you are using a Mac OSX system, then installation may require setting an
environment variable as `explained here <https://github.com/pytorch/pytorch/issues/1434>`_.
Strict dependencies
-------------------
- `Python <http://docs.python-guide.org/en/latest/starting/installation/>`__ (2.7+, 3.4+)
- `Numpy <https://scipy.org/install.html>`__
- `six <https://six.readthedocs.io/>`__
- Source builds: `Cython <https://cython.org/>`__ and a compiler.
Getting started
---------------
.. code-block:: python
>>> from numpythia import Pythia, hepmc_write, hepmc_read
>>> from numpythia import STATUS, HAS_END_VERTEX, ABS_PDG_ID
>>> from numpythia.testcmnd import get_cmnd
>>> from numpy.testing import assert_array_equal
>>> pythia = Pythia(get_cmnd('w'), random_state=1)
>>> selection = ((STATUS == 1) & ~HAS_END_VERTEX &
(ABS_PDG_ID != 12) & (ABS_PDG_ID != 14) & (ABS_PDG_ID != 16))
>>> # generate events while writing to ascii hepmc
>>> for event in hepmc_write('events.hepmc', pythia(events=1)):
>>> array1 = event.all(selection)
>>> # read the same event back from ascii hepmc
>>> for event in hepmc_read('events.hepmc'):
>>> array2 = event.all(selection)
>>> assert_array_equal(array1, array2)
True
The dtype of any array of particle information is:
.. code-block:: python
np.dtype([('E', 'f8'), ('px', 'f8'), ('py', 'f8'), ('pz', 'f8'), ('pt', 'f8'),
('mass', 'f8'), ('rap', 'f8'), ('eta', 'f8'), ('theta', 'f8'),
('phi', 'f8'), ('prodx', 'f8'), ('prody', 'f8'), ('prodz', 'f8'),
('prodt', 'f8'), ('pdgid', 'i4'), ('status', 'i4')])
Also see `pyjet <https://github.com/scikit-hep/pyjet>`_ for jet clustering.
Tutorial
--------
Setting PYTHIA
~~~~~~~~~~~~~~
PYTHIA settings can be passed in one of three ways: through the `**kwargs` arguments of the constructor `Pythia(..., **kwargs)`:
.. code-block:: python
>>> pythia = Pythia(..., Beams_eCM=13000.)
Or as a dictionary:
.. code-block:: python
>>> pythia = Pythia(..., params={'Beams:eCM': 13000.})
Or via a Python command file:
.. code-block:: python
>>> pythia = Pythia(config='path/to/config.cmd')
The full list of settings can be found on the `PYTHIA homepage <http://home.thep.lu.se/Pythia/>`_.
Note that the ":" in settings names is replaced by a "_" if using `kwargs`.
`kwargs` take precedence over `params` and they both take precedence over `config`.
Example config files can be found under the `numpythia.testcmnd` directory.
Generate events
~~~~~~~~~~~~~~~
To generate events do
.. code-block:: python
>>> events = pythia(events=100)
>>> events
<generator at 0x10cf06f78>
where **events** is a generator of ``GenEvent`` containing all the generated particles.
Generated particles can be accessed through the ``all``, ``first`` and ``last``
methods which have two optional arguments ``selection`` and ``return_hepmc``.
Selection is a filter or a combination of filters with bitwise operations (as
shown in the *getting started* example) applied on the particles in the event.
The available filters are
.. code-block:: python
STATUS, PDG_ID, ABS_PDG_ID, HAS_END_VERTEX, HAS_PRODUCTION_VERTEX,
HAS_SAME_PDG_ID_DAUGHTER, IS_STABLE, IS_BEAM
``return_hepmc`` is by default set to ``False`` when using ``all``:
.. code-block:: python
>>> for e in events:
>>> array = e.all(selection)
returns an array of particles, with the dtype described above. ``return_hepmc`` is
by default set to ``True`` for ``first`` and ``last``:
.. code-block:: python
>>> for e in events:
>>> gen_part_f = e.first(selection)
>>> gen_part_l = e.last(selection)
returns a ``GenParticle``.
Generated particle
~~~~~~~~~~~~~~~~~~
``GenParticle`` is the numpythia interface of
`HepMC::GenParticle <http://lcgapp.cern.ch/project/simu/HepMC/205/html/classHepMC_1_1GenParticle.html>`_,
and has the following attributes
.. code-block:: python
pid, status, e, px, py, pz, pt, eta, phi, mass, theta, rap
``GenParticle`` also has the following methods ``parents``, ``children``, ``ancestors``,
``descendants`` and ``siblings`` both with the two optional arguments ``selection``
and ``return_hepmc`` described before. For instance:
.. code-block:: python
>>> for e in events:
>>> w = e.last((ABS_PDG_ID == 24) & HAS_END_VERTEX))
>>> w.children()
array([(240.60708981, 115.76101664, 126.16766767, -169.03439984, 171.22760682, 0.5, -0.87228439, -0.87228739, 2.34974894, 0.82838703, 0., 0., 0., 0., 3, 23),
( 52.59241372, 9.21296404, 50.77873929, -10.01763001, 51.60774235, 1.5, -0.19283178, -0.19291222, 1.76252302, 1.39131523, 0., 0., 0., 0., -4, 23)],
dtype=[('E', '<f8'), ('px', '<f8'), ('py', '<f8'), ('pz', '<f8'), ('pT', '<f8'), ('mass', '<f8'), ('rap', '<f8'), ('eta', '<f8'), ('theta', '<f8'), ('phi', '<f8'), ('prodx', '<f8'), ('prody', '<f8'), ('prodz', '<f8'), ('prodt', '<f8'), ('pdgid', '<i4'), ('status', '<i4')])
Raw data
{
"_id": null,
"home_page": "http://github.com/scikit-hep/numpythia",
"name": "numpythia",
"maintainer": "the Scikit-HEP admins",
"docs_url": null,
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"maintainer_email": "scikit-hep-admins@googlegroups.com",
"keywords": "",
"author": "",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/a6/d2/7576508ab030252bbcb150f8e1d175ba356a6185f6f2ced862993f3d4c28/numpythia-1.2.0.tar.gz",
"platform": "",
"description": ".. -*- mode: rst -*-\n\nnumpythia: The interface between PYTHIA and NumPy\n=================================================\n\n.. image:: https://img.shields.io/pypi/v/numpythia.svg\n :target: https://pypi.python.org/pypi/numpythia\n\n.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.1471492.svg\n :target: https://doi.org/10.5281/zenodo.1471492\n\n.. image:: https://github.com/scikit-hep/numpythia/workflows/Main/badge.svg?branch=master\n :target: https://github.com/scikit-hep/numpythia/actions\n :alt: Test status\n\n.. image:: https://dev.azure.com/scikit-hep/numpythia/_apis/build/status/scikit-hep.pyjet?branchName=master\n :target: https://dev.azure.com/scikit-hep/numpythia/_build/latest?definitionId=9&branchName=master\n :alt: Wheel builds\n\nnumpythia provides an interface between `PYTHIA\n<http://home.thep.lu.se/Pythia/>`_ and `NumPy\n<http://www.numpy.org/>`_ allowing you to generate events as NumPy arrays of\nparticle four-momenta. By default numpythia only depends on NumPy and builds\ninternal copies of the PYTHIA and `HepMC <http://hepmc.web.cern.ch/hepmc/>`_\nsource code.\n\nStandalone Installation\n-----------------------\n\nTo simply use the built-in PYTHIA and HepMC::\n\n pip install -v numpythia\n\nAnd you're good to go!\n\nSupport for building against an external PYTHIA is on the wishlist.\n\nNote that if you are using a Mac OSX system, then installation may require setting an\nenvironment variable as `explained here <https://github.com/pytorch/pytorch/issues/1434>`_.\n\nStrict dependencies\n-------------------\n\n- `Python <http://docs.python-guide.org/en/latest/starting/installation/>`__ (2.7+, 3.4+)\n- `Numpy <https://scipy.org/install.html>`__\n- `six <https://six.readthedocs.io/>`__\n- Source builds: `Cython <https://cython.org/>`__ and a compiler.\n\nGetting started\n---------------\n\n.. code-block:: python\n\n >>> from numpythia import Pythia, hepmc_write, hepmc_read\n >>> from numpythia import STATUS, HAS_END_VERTEX, ABS_PDG_ID\n >>> from numpythia.testcmnd import get_cmnd\n >>> from numpy.testing import assert_array_equal\n\n >>> pythia = Pythia(get_cmnd('w'), random_state=1)\n\n >>> selection = ((STATUS == 1) & ~HAS_END_VERTEX &\n (ABS_PDG_ID != 12) & (ABS_PDG_ID != 14) & (ABS_PDG_ID != 16))\n\n >>> # generate events while writing to ascii hepmc\n >>> for event in hepmc_write('events.hepmc', pythia(events=1)):\n >>> array1 = event.all(selection)\n\n >>> # read the same event back from ascii hepmc\n >>> for event in hepmc_read('events.hepmc'):\n >>> array2 = event.all(selection)\n\n >>> assert_array_equal(array1, array2)\n True\n\nThe dtype of any array of particle information is:\n\n.. code-block:: python\n\n np.dtype([('E', 'f8'), ('px', 'f8'), ('py', 'f8'), ('pz', 'f8'), ('pt', 'f8'),\n ('mass', 'f8'), ('rap', 'f8'), ('eta', 'f8'), ('theta', 'f8'),\n ('phi', 'f8'), ('prodx', 'f8'), ('prody', 'f8'), ('prodz', 'f8'),\n ('prodt', 'f8'), ('pdgid', 'i4'), ('status', 'i4')])\n\nAlso see `pyjet <https://github.com/scikit-hep/pyjet>`_ for jet clustering.\n\nTutorial\n--------\n\nSetting PYTHIA\n~~~~~~~~~~~~~~\n\nPYTHIA settings can be passed in one of three ways: through the `**kwargs` arguments of the constructor `Pythia(..., **kwargs)`:\n\n.. code-block:: python\n\n >>> pythia = Pythia(..., Beams_eCM=13000.)\n\nOr as a dictionary:\n\n.. code-block:: python\n\n >>> pythia = Pythia(..., params={'Beams:eCM': 13000.})\n\nOr via a Python command file:\n\n.. code-block:: python\n\n >>> pythia = Pythia(config='path/to/config.cmd')\n\nThe full list of settings can be found on the `PYTHIA homepage <http://home.thep.lu.se/Pythia/>`_.\n\nNote that the \":\" in settings names is replaced by a \"_\" if using `kwargs`.\n`kwargs` take precedence over `params` and they both take precedence over `config`.\nExample config files can be found under the `numpythia.testcmnd` directory.\n\nGenerate events\n~~~~~~~~~~~~~~~\n\nTo generate events do\n\n.. code-block:: python\n\n >>> events = pythia(events=100)\n >>> events\n <generator at 0x10cf06f78>\n\nwhere **events** is a generator of ``GenEvent`` containing all the generated particles.\n\nGenerated particles can be accessed through the ``all``, ``first`` and ``last``\nmethods which have two optional arguments ``selection`` and ``return_hepmc``.\nSelection is a filter or a combination of filters with bitwise operations (as\nshown in the *getting started* example) applied on the particles in the event.\nThe available filters are\n\n.. code-block:: python\n\n STATUS, PDG_ID, ABS_PDG_ID, HAS_END_VERTEX, HAS_PRODUCTION_VERTEX,\n HAS_SAME_PDG_ID_DAUGHTER, IS_STABLE, IS_BEAM\n\n``return_hepmc`` is by default set to ``False`` when using ``all``:\n\n.. code-block:: python\n\n >>> for e in events:\n >>> array = e.all(selection)\n\nreturns an array of particles, with the dtype described above. ``return_hepmc`` is\nby default set to ``True`` for ``first`` and ``last``:\n\n.. code-block:: python\n\n >>> for e in events:\n >>> gen_part_f = e.first(selection)\n >>> gen_part_l = e.last(selection)\n\nreturns a ``GenParticle``.\n\nGenerated particle\n~~~~~~~~~~~~~~~~~~\n\n``GenParticle`` is the numpythia interface of\n`HepMC::GenParticle <http://lcgapp.cern.ch/project/simu/HepMC/205/html/classHepMC_1_1GenParticle.html>`_,\nand has the following attributes\n\n.. code-block:: python\n\n pid, status, e, px, py, pz, pt, eta, phi, mass, theta, rap\n\n``GenParticle`` also has the following methods ``parents``, ``children``, ``ancestors``,\n``descendants`` and ``siblings`` both with the two optional arguments ``selection``\nand ``return_hepmc`` described before. For instance:\n\n.. code-block:: python\n\n >>> for e in events:\n >>> w = e.last((ABS_PDG_ID == 24) & HAS_END_VERTEX))\n >>> w.children()\n array([(240.60708981, 115.76101664, 126.16766767, -169.03439984, 171.22760682, 0.5, -0.87228439, -0.87228739, 2.34974894, 0.82838703, 0., 0., 0., 0., 3, 23),\n ( 52.59241372, 9.21296404, 50.77873929, -10.01763001, 51.60774235, 1.5, -0.19283178, -0.19291222, 1.76252302, 1.39131523, 0., 0., 0., 0., -4, 23)],\n dtype=[('E', '<f8'), ('px', '<f8'), ('py', '<f8'), ('pz', '<f8'), ('pT', '<f8'), ('mass', '<f8'), ('rap', '<f8'), ('eta', '<f8'), ('theta', '<f8'), ('phi', '<f8'), ('prodx', '<f8'), ('prody', '<f8'), ('prodz', '<f8'), ('prodt', '<f8'), ('pdgid', '<i4'), ('status', '<i4')])\n\n\n",
"bugtrack_url": null,
"license": "GPLv3",
"summary": "The interface between PYTHIA and NumPy",
"version": "1.2.0",
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "d916126b8124fefc918c1aec67b49ebf",
"sha256": "ab0221579fded25459e677bb52cd68e9bdda2f3370e0cbbb8f3dd41791f92003"
},
"downloads": -1,
"filename": "numpythia-1.2.0-cp27-cp27m-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "d916126b8124fefc918c1aec67b49ebf",
"packagetype": "bdist_wheel",
"python_version": "cp27",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 12850095,
"upload_time": "2020-11-25T23:42:02",
"upload_time_iso_8601": "2020-11-25T23:42:02.211492Z",
"url": "https://files.pythonhosted.org/packages/66/c2/cceeef982fe931d451fbf4a3e2c77fc946b5d3757e0e2e318eaf0d19b2ad/numpythia-1.2.0-cp27-cp27m-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "ad49c551fe3c81b21d1892ba8d2ac877",
"sha256": "29b5050d68d4e2816bee6040d78b62e9892a3820ad2372972fb0650c4031af1a"
},
"downloads": -1,
"filename": "numpythia-1.2.0-cp27-cp27m-manylinux1_i686.whl",
"has_sig": false,
"md5_digest": "ad49c551fe3c81b21d1892ba8d2ac877",
"packagetype": "bdist_wheel",
"python_version": "cp27",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 39025188,
"upload_time": "2020-11-25T23:42:05",
"upload_time_iso_8601": "2020-11-25T23:42:05.197912Z",
"url": "https://files.pythonhosted.org/packages/d4/cc/06f612c524dc47db4c9972103af1528da92d448600bfe75b8b2d7392145e/numpythia-1.2.0-cp27-cp27m-manylinux1_i686.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "d95079cd13ff26d88d8429dd22795e2a",
"sha256": "d04624d35cca414e6ed42ec9b529d15fc078cd1d00d5823f9c26f79963cbb840"
},
"downloads": -1,
"filename": "numpythia-1.2.0-cp27-cp27m-manylinux1_x86_64.whl",
"has_sig": false,
"md5_digest": "d95079cd13ff26d88d8429dd22795e2a",
"packagetype": "bdist_wheel",
"python_version": "cp27",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 39705956,
"upload_time": "2020-11-25T23:42:08",
"upload_time_iso_8601": "2020-11-25T23:42:08.659384Z",
"url": "https://files.pythonhosted.org/packages/d3/da/c59bab78057371b6da5d571d80e018c034097380e36deadb82df0b82a696/numpythia-1.2.0-cp27-cp27m-manylinux1_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "dce48e2d70495cdda61b9a4ea679183b",
"sha256": "68d052dd16be6a3a4016916cecd19c5f8dd22a55144f1c1c2000c20b0fdbb145"
},
"downloads": -1,
"filename": "numpythia-1.2.0-cp27-cp27mu-manylinux1_i686.whl",
"has_sig": false,
"md5_digest": "dce48e2d70495cdda61b9a4ea679183b",
"packagetype": "bdist_wheel",
"python_version": "cp27",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 39025249,
"upload_time": "2020-11-25T23:42:11",
"upload_time_iso_8601": "2020-11-25T23:42:11.683284Z",
"url": "https://files.pythonhosted.org/packages/eb/93/ff1d53f866f24fd5648aa0318ab524b56cb03db294883259050b39e96713/numpythia-1.2.0-cp27-cp27mu-manylinux1_i686.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "bdf3468483a1573ec93a17a0798a5676",
"sha256": "6fe074a07b617256064cf9cb71756208d9c4c2ee1a52ae4b1fec71a16e23677e"
},
"downloads": -1,
"filename": "numpythia-1.2.0-cp27-cp27mu-manylinux1_x86_64.whl",
"has_sig": false,
"md5_digest": "bdf3468483a1573ec93a17a0798a5676",
"packagetype": "bdist_wheel",
"python_version": "cp27",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 39705830,
"upload_time": "2020-11-25T23:42:14",
"upload_time_iso_8601": "2020-11-25T23:42:14.712434Z",
"url": "https://files.pythonhosted.org/packages/a4/01/2172a65860532526cfde27d630010d7e5a4b4490cd847c1c9e9a46d4b0e1/numpythia-1.2.0-cp27-cp27mu-manylinux1_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "296f78ae981b8bc75a9344a6c8f965a7",
"sha256": "614e7cc25d10ce6193e8ea4a821c0887b1e8f7d07f533cd31cca21bbd93b4110"
},
"downloads": -1,
"filename": "numpythia-1.2.0-cp35-cp35m-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "296f78ae981b8bc75a9344a6c8f965a7",
"packagetype": "bdist_wheel",
"python_version": "cp35",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 12849407,
"upload_time": "2020-11-25T23:42:17",
"upload_time_iso_8601": "2020-11-25T23:42:17.166355Z",
"url": "https://files.pythonhosted.org/packages/c9/8d/d6dd56b9f7538e4c773fee7532d47929e94edd9dd0ad708d90061d64982b/numpythia-1.2.0-cp35-cp35m-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "5a25353ca6b648637bd6a3c92932145c",
"sha256": "8099ca2ea41b0be1ca487f1088c3e33c38b8852ff7a90de168509a60dece1219"
},
"downloads": -1,
"filename": "numpythia-1.2.0-cp35-cp35m-manylinux1_i686.whl",
"has_sig": false,
"md5_digest": "5a25353ca6b648637bd6a3c92932145c",
"packagetype": "bdist_wheel",
"python_version": "cp35",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 39009932,
"upload_time": "2020-11-25T23:42:20",
"upload_time_iso_8601": "2020-11-25T23:42:20.256133Z",
"url": "https://files.pythonhosted.org/packages/5b/d6/2d3a34863bb45e5f6d299d47033a6f27adb63a397e35f0410a442b9c8601/numpythia-1.2.0-cp35-cp35m-manylinux1_i686.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "d17d5751c2fba4ce3925c183ace0db4c",
"sha256": "177f079ef0febe15764cc5a9cd1a288246b57ce3a1d8e3310037e3323f9db661"
},
"downloads": -1,
"filename": "numpythia-1.2.0-cp35-cp35m-manylinux1_x86_64.whl",
"has_sig": false,
"md5_digest": "d17d5751c2fba4ce3925c183ace0db4c",
"packagetype": "bdist_wheel",
"python_version": "cp35",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 39684172,
"upload_time": "2020-11-25T23:42:23",
"upload_time_iso_8601": "2020-11-25T23:42:23.292139Z",
"url": "https://files.pythonhosted.org/packages/4d/ad/30b14b57f7258e2f83f0fb4bcd702c45de15f7f5b5e1e09ede9dbdb13855/numpythia-1.2.0-cp35-cp35m-manylinux1_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "769a1470848b234b849eb3a3ab02953c",
"sha256": "a59e721cb695005554f66a371a08d3581b281d6efd0940d80402f46eaddbb388"
},
"downloads": -1,
"filename": "numpythia-1.2.0-cp36-cp36m-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "769a1470848b234b849eb3a3ab02953c",
"packagetype": "bdist_wheel",
"python_version": "cp36",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 12870928,
"upload_time": "2020-11-25T23:42:25",
"upload_time_iso_8601": "2020-11-25T23:42:25.478228Z",
"url": "https://files.pythonhosted.org/packages/9b/c8/222ef627b9696555b981f9d0d270404d32543e87a844f8cb45c299c3090d/numpythia-1.2.0-cp36-cp36m-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "51e4dfdf5fb1a71ad760613485a64c1e",
"sha256": "d0f13deb25a75f8359ed2fe1ed8ca877c599e1d2f5c94e1c779033cd7ad7723f"
},
"downloads": -1,
"filename": "numpythia-1.2.0-cp36-cp36m-manylinux1_i686.whl",
"has_sig": false,
"md5_digest": "51e4dfdf5fb1a71ad760613485a64c1e",
"packagetype": "bdist_wheel",
"python_version": "cp36",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 39019729,
"upload_time": "2020-11-25T23:42:28",
"upload_time_iso_8601": "2020-11-25T23:42:28.950884Z",
"url": "https://files.pythonhosted.org/packages/7e/9e/253f66cad4da55949191dc7f7d50a87bf1ed7967fbe298dc86b2552243f4/numpythia-1.2.0-cp36-cp36m-manylinux1_i686.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "45634974babd91836f3d28c7f1a663b2",
"sha256": "1a324a9aef12df2e403814f028042b46cc884c7846d6b22cf13a3a8ee4e077fc"
},
"downloads": -1,
"filename": "numpythia-1.2.0-cp36-cp36m-manylinux1_x86_64.whl",
"has_sig": false,
"md5_digest": "45634974babd91836f3d28c7f1a663b2",
"packagetype": "bdist_wheel",
"python_version": "cp36",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 39699492,
"upload_time": "2020-11-25T23:42:32",
"upload_time_iso_8601": "2020-11-25T23:42:32.644774Z",
"url": "https://files.pythonhosted.org/packages/ea/52/4e5dae903ce03c4d2597bc4b3749d6660fcc37caaa380d107022dabaf7cb/numpythia-1.2.0-cp36-cp36m-manylinux1_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "8e8c27fc582a78d57ef326fd7a1820ab",
"sha256": "ec9cb47c3399519dd52be0fbb9fa65702f9292bcabb77c34796517db18f8d8ab"
},
"downloads": -1,
"filename": "numpythia-1.2.0-cp37-cp37m-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "8e8c27fc582a78d57ef326fd7a1820ab",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 12869445,
"upload_time": "2020-11-25T23:42:35",
"upload_time_iso_8601": "2020-11-25T23:42:35.284756Z",
"url": "https://files.pythonhosted.org/packages/c4/eb/dae922befdca2fd6539d5621c40a8174dafa736ff37b41c5b22126afd902/numpythia-1.2.0-cp37-cp37m-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "d5780bcdf4afe3098034dfde440cf8ac",
"sha256": "c43ac4c27413d4d3a34b8072117fb234868d525d511e9c0f1e609da2de564c19"
},
"downloads": -1,
"filename": "numpythia-1.2.0-cp37-cp37m-manylinux1_i686.whl",
"has_sig": false,
"md5_digest": "d5780bcdf4afe3098034dfde440cf8ac",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 39019054,
"upload_time": "2020-11-25T23:42:37",
"upload_time_iso_8601": "2020-11-25T23:42:37.883395Z",
"url": "https://files.pythonhosted.org/packages/cf/fe/da9414e18466257810e87c8df7f3730c86fb5baf0995056bc64d84735786/numpythia-1.2.0-cp37-cp37m-manylinux1_i686.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "760f9c89de36f988b44317f97bb61560",
"sha256": "5b1fb1b639d2dceac7eb55ece4147a96d3ab6942ef4825f570ad0ae948e3cb34"
},
"downloads": -1,
"filename": "numpythia-1.2.0-cp37-cp37m-manylinux1_x86_64.whl",
"has_sig": false,
"md5_digest": "760f9c89de36f988b44317f97bb61560",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 39696047,
"upload_time": "2020-11-25T23:42:40",
"upload_time_iso_8601": "2020-11-25T23:42:40.935484Z",
"url": "https://files.pythonhosted.org/packages/b1/f1/80172de9cfe56b75546aeb7c0ba2543384754f5c9e2e81d9934da0690aba/numpythia-1.2.0-cp37-cp37m-manylinux1_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "9b30d1e6ce6d40b84338e9172253bb44",
"sha256": "73f6087040462b7e2a40dabc41dd41ec5ffb111365d86646619d10caa05bdc9b"
},
"downloads": -1,
"filename": "numpythia-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "9b30d1e6ce6d40b84338e9172253bb44",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 12869285,
"upload_time": "2020-11-25T23:42:43",
"upload_time_iso_8601": "2020-11-25T23:42:43.424299Z",
"url": "https://files.pythonhosted.org/packages/62/da/fbd9e15a1115922d643264dc82cd72bef14ecd1eb7aed9d6b5866c42a4fa/numpythia-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "3f196ef07ab795969e086a5b8d26442d",
"sha256": "f9da58e379a10f3e39a609730ce2739d5cd0f13263cb51ff7c74ec2aaebb2beb"
},
"downloads": -1,
"filename": "numpythia-1.2.0-cp38-cp38-manylinux1_i686.whl",
"has_sig": false,
"md5_digest": "3f196ef07ab795969e086a5b8d26442d",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 39027616,
"upload_time": "2020-11-25T23:42:45",
"upload_time_iso_8601": "2020-11-25T23:42:45.918556Z",
"url": "https://files.pythonhosted.org/packages/1c/35/d4e2582f2ad85c0a903193348a3f4d7e0fbdd7004397cbf1b534c7393862/numpythia-1.2.0-cp38-cp38-manylinux1_i686.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "910f735319a103fc84803ef15b2585cc",
"sha256": "2b54edab5df525ddde69178339c267e2deeb005e88c434e90be9cb0bb1b0583e"
},
"downloads": -1,
"filename": "numpythia-1.2.0-cp38-cp38-manylinux1_x86_64.whl",
"has_sig": false,
"md5_digest": "910f735319a103fc84803ef15b2585cc",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 39710226,
"upload_time": "2020-11-25T23:42:49",
"upload_time_iso_8601": "2020-11-25T23:42:49.019297Z",
"url": "https://files.pythonhosted.org/packages/1c/95/77be5efe83628431a800a48b8cc174f78041ab5af0ce117901f3eda1f31c/numpythia-1.2.0-cp38-cp38-manylinux1_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "262f394fae39d560af20e39085579c22",
"sha256": "b41a2af7cad39ab7f25fd470d979c31924bbaddbbca05963f36d2b19df373528"
},
"downloads": -1,
"filename": "numpythia-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "262f394fae39d560af20e39085579c22",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 12861862,
"upload_time": "2020-11-25T23:42:51",
"upload_time_iso_8601": "2020-11-25T23:42:51.643842Z",
"url": "https://files.pythonhosted.org/packages/71/05/1d1d2a86647779a9cfbf5e8cba6d3c01f6ccd29926134b60002b3c4a8180/numpythia-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "6ba739ba57858493617397c1ec63c3fd",
"sha256": "3a2bf6274977f4e83dd00c38cb20aa30d6da38fadff3941d9f7433eab0440a6e"
},
"downloads": -1,
"filename": "numpythia-1.2.0-cp39-cp39-manylinux1_i686.whl",
"has_sig": false,
"md5_digest": "6ba739ba57858493617397c1ec63c3fd",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 39020859,
"upload_time": "2020-11-25T23:42:54",
"upload_time_iso_8601": "2020-11-25T23:42:54.362993Z",
"url": "https://files.pythonhosted.org/packages/66/5b/32182f0e20854721ea5dacc32df4d7011357fe0ce1945715a61d6f0e5000/numpythia-1.2.0-cp39-cp39-manylinux1_i686.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "389eff4ad46cf98ea5b906e4bb6bc13d",
"sha256": "5a57e6c236f85608c73128d55a4618b74f1cac01e00159d8050469fd4c107d2a"
},
"downloads": -1,
"filename": "numpythia-1.2.0-cp39-cp39-manylinux1_x86_64.whl",
"has_sig": false,
"md5_digest": "389eff4ad46cf98ea5b906e4bb6bc13d",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 39699499,
"upload_time": "2020-11-25T23:42:57",
"upload_time_iso_8601": "2020-11-25T23:42:57.204138Z",
"url": "https://files.pythonhosted.org/packages/f4/e6/b2af7dd875a0a57aea6763725d25aea453176651cbf7018df5c5bf336852/numpythia-1.2.0-cp39-cp39-manylinux1_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "994213b3507853dc3f52c42049aa4237",
"sha256": "384b9912e59cceb678a41463f691a22284a7df1705ad19f2a74f8c50085e087d"
},
"downloads": -1,
"filename": "numpythia-1.2.0-pp27-pypy_73-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "994213b3507853dc3f52c42049aa4237",
"packagetype": "bdist_wheel",
"python_version": "pp27",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 12599780,
"upload_time": "2020-11-25T23:42:59",
"upload_time_iso_8601": "2020-11-25T23:42:59.257434Z",
"url": "https://files.pythonhosted.org/packages/4d/13/a40116907bff251fdd4a20f26cd4fcf7505f79435a37b3479bb1cf46cb0e/numpythia-1.2.0-pp27-pypy_73-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "dd77f7e53c44645ed6742178033bebb3",
"sha256": "81eb9b1f2d80f8e1b5c260ee493d16f9f5abdd81a11aca1e71e798521f5e0ab3"
},
"downloads": -1,
"filename": "numpythia-1.2.0-pp27-pypy_73-manylinux2010_x86_64.whl",
"has_sig": false,
"md5_digest": "dd77f7e53c44645ed6742178033bebb3",
"packagetype": "bdist_wheel",
"python_version": "pp27",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 12953130,
"upload_time": "2020-11-25T23:43:01",
"upload_time_iso_8601": "2020-11-25T23:43:01.312402Z",
"url": "https://files.pythonhosted.org/packages/17/dc/e4e2ac8eeb545dd56d05020ab847854f7fab468942fabfe5496bbbb018a4/numpythia-1.2.0-pp27-pypy_73-manylinux2010_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "58373017c2faf58182e4f20df9136d37",
"sha256": "bc1649ded764a4d18295e2f52110f0e3c12cf5cfb12cee694ebc186b9c7cf437"
},
"downloads": -1,
"filename": "numpythia-1.2.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "58373017c2faf58182e4f20df9136d37",
"packagetype": "bdist_wheel",
"python_version": "pp36",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 12599905,
"upload_time": "2020-11-25T23:43:03",
"upload_time_iso_8601": "2020-11-25T23:43:03.307974Z",
"url": "https://files.pythonhosted.org/packages/d4/74/1ba98d85896a50d324857e4c25caf1198323efa4887cce0ffa06b418ff2e/numpythia-1.2.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "10d3ed65a6c95f42a5e1437081b4433a",
"sha256": "6aac7f87ca496c5d8e9be2d1586cf27923f0dffbbb889b4337c08228c0cc9ae0"
},
"downloads": -1,
"filename": "numpythia-1.2.0-pp36-pypy36_pp73-manylinux2010_x86_64.whl",
"has_sig": false,
"md5_digest": "10d3ed65a6c95f42a5e1437081b4433a",
"packagetype": "bdist_wheel",
"python_version": "pp36",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 12953496,
"upload_time": "2020-11-25T23:43:05",
"upload_time_iso_8601": "2020-11-25T23:43:05.398297Z",
"url": "https://files.pythonhosted.org/packages/34/3d/64d00db8310b8e26215bfc470ecaee5c768f3a391765c1a71ab8fb1d4b79/numpythia-1.2.0-pp36-pypy36_pp73-manylinux2010_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "aab709f30e1aa3f58c9cf047358c3f26",
"sha256": "3ffab56f6b99075d275348896317d2a879a4c078a71c5465ede2211b82d9625f"
},
"downloads": -1,
"filename": "numpythia-1.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "aab709f30e1aa3f58c9cf047358c3f26",
"packagetype": "bdist_wheel",
"python_version": "pp37",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 12599903,
"upload_time": "2020-11-25T23:43:07",
"upload_time_iso_8601": "2020-11-25T23:43:07.097566Z",
"url": "https://files.pythonhosted.org/packages/52/51/d84d3b0c2dbb952ca16ab3e947861c2ebf247ac6c48be0a77152162a5eb0/numpythia-1.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "a8f334b9926249d19c80995db994fa6c",
"sha256": "79cf7a5ca0154cb256c0f153490162bcb877bfab5b3739ed1331c2bb30f8b20d"
},
"downloads": -1,
"filename": "numpythia-1.2.0-pp37-pypy37_pp73-manylinux2010_x86_64.whl",
"has_sig": false,
"md5_digest": "a8f334b9926249d19c80995db994fa6c",
"packagetype": "bdist_wheel",
"python_version": "pp37",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 12953490,
"upload_time": "2020-11-25T23:43:08",
"upload_time_iso_8601": "2020-11-25T23:43:08.862738Z",
"url": "https://files.pythonhosted.org/packages/cd/ed/744493eb8e9e251982628329ee437741533fd6be342984bd93e63fef3399/numpythia-1.2.0-pp37-pypy37_pp73-manylinux2010_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "24fa3320a9a0574ef39f6fabd7567ced",
"sha256": "0f2f931f59e9d9b0c5e3d3e8360c9063e878f4c83ec4b18bd34a4038aedd800d"
},
"downloads": -1,
"filename": "numpythia-1.2.0.tar.gz",
"has_sig": false,
"md5_digest": "24fa3320a9a0574ef39f6fabd7567ced",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
"size": 11061256,
"upload_time": "2020-11-25T23:43:10",
"upload_time_iso_8601": "2020-11-25T23:43:10.981432Z",
"url": "https://files.pythonhosted.org/packages/a6/d2/7576508ab030252bbcb150f8e1d175ba356a6185f6f2ced862993f3d4c28/numpythia-1.2.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2020-11-25 23:43:10",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": null,
"github_project": "scikit-hep",
"error": "Could not fetch GitHub repository",
"lcname": "numpythia"
}