numpytypechecker


Namenumpytypechecker JSON
Version 0.11 PyPI version JSON
download
home_pagehttps://github.com/hansalemaos/numpytypechecker
SummaryCheck and convert the data type of a NumPy array based on a predefined set of data types.
upload_time2023-12-03 08:09:30
maintainer
docs_urlNone
authorJohannes Fischer
requires_python
licenseMIT
keywords numpytypechecker np
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# Check and convert the data type of a NumPy array based on a predefined set of data types.


## pip install numpytypechecker

### Tested against Windows / Python 3.11 / Anaconda



```python
dtypecheck(array, filterna=True, float2int=True, dtypes=(np.uint8,
                                                             np.int8,
                                                             np.uint16,
                                                             np.int16,
                                                             np.uint32,
                                                             np.int32,
                                                             np.uint64,
                                                             np.int64,
                                                             np.uintp,
                                                             np.intp,
                                                             np.float16,
                                                             np.float32,
                                                             np.float64,
                                                             'M',
                                                             'm',
                                                             'O',
                                                             'P',
                                                             'S',
                                                             'U',
                                                             'V',
                                                             'p',
                                                             's',
                                                             np.complex64,
                                                             np.complex128,
                                                             np.datetime64,

                                                             np.timedelta64,
                                                             np.void, bool, np.bool_,
                                                             object
                                                             )):
    r"""
    Check and convert the data type of a NumPy array based on a predefined set of data types.

    Parameters:
    - array (numpy.ndarray): Input NumPy array.
    - filterna (bool, optional): If True, remove NaN values from the array before type checking.
                                  Default is True.
    - float2int (bool, optional): If True, convert float arrays to integer if they contain only integers.
                                  Default is True.
    - dtypes (tuple, optional): Tuple of NumPy data types to check against. Default includes various numeric,
                               datetime, timedelta, complex, boolean, and object types.

    Returns:
    - numpy.ndarray: NumPy array with the converted data type.

    Examples:

        from numpytypechecker import dtypecheck
        import numpy as np
        # Example
        a1D = np.array([1, 2, 3, 4])
        a2D = np.array([[1, 2], [3, 4]])
        a3D = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
        b1 = np.array([2., 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9])
        b2 = np.array([[1., 1., 1., 0.],
                       [1., 1., 0., 1.],
                       [0., 0., -3., 0.],
                       [0., 0., np.nan, -4.]])

        print(dtypecheck(a1D, filterna=True, float2int=True, ).dtype)
        print(dtypecheck(a2D, filterna=True, float2int=True, ).dtype)
        print(dtypecheck(a3D, filterna=True, float2int=True, ).dtype)
        print(dtypecheck(b1, filterna=True, float2int=True, ).dtype)
        print(dtypecheck(b2, filterna=False, float2int=True, ).dtype)

        # uint8
        # uint8
        # uint8
        # float64
        # float64

```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/hansalemaos/numpytypechecker",
    "name": "numpytypechecker",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "numpytypechecker,np",
    "author": "Johannes Fischer",
    "author_email": "aulasparticularesdealemaosp@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/82/1d/80be8aa50a17743c3b399f0bb3974056bca863712d1ac4bb95911ad201a5/numpytypechecker-0.11.tar.gz",
    "platform": null,
    "description": "\r\n# Check and convert the data type of a NumPy array based on a predefined set of data types.\r\n\r\n\r\n## pip install numpytypechecker\r\n\r\n### Tested against Windows / Python 3.11 / Anaconda\r\n\r\n\r\n\r\n```python\r\ndtypecheck(array, filterna=True, float2int=True, dtypes=(np.uint8,\r\n                                                             np.int8,\r\n                                                             np.uint16,\r\n                                                             np.int16,\r\n                                                             np.uint32,\r\n                                                             np.int32,\r\n                                                             np.uint64,\r\n                                                             np.int64,\r\n                                                             np.uintp,\r\n                                                             np.intp,\r\n                                                             np.float16,\r\n                                                             np.float32,\r\n                                                             np.float64,\r\n                                                             'M',\r\n                                                             'm',\r\n                                                             'O',\r\n                                                             'P',\r\n                                                             'S',\r\n                                                             'U',\r\n                                                             'V',\r\n                                                             'p',\r\n                                                             's',\r\n                                                             np.complex64,\r\n                                                             np.complex128,\r\n                                                             np.datetime64,\r\n\r\n                                                             np.timedelta64,\r\n                                                             np.void, bool, np.bool_,\r\n                                                             object\r\n                                                             )):\r\n    r\"\"\"\r\n    Check and convert the data type of a NumPy array based on a predefined set of data types.\r\n\r\n    Parameters:\r\n    - array (numpy.ndarray): Input NumPy array.\r\n    - filterna (bool, optional): If True, remove NaN values from the array before type checking.\r\n                                  Default is True.\r\n    - float2int (bool, optional): If True, convert float arrays to integer if they contain only integers.\r\n                                  Default is True.\r\n    - dtypes (tuple, optional): Tuple of NumPy data types to check against. Default includes various numeric,\r\n                               datetime, timedelta, complex, boolean, and object types.\r\n\r\n    Returns:\r\n    - numpy.ndarray: NumPy array with the converted data type.\r\n\r\n    Examples:\r\n\r\n        from numpytypechecker import dtypecheck\r\n        import numpy as np\r\n        # Example\r\n        a1D = np.array([1, 2, 3, 4])\r\n        a2D = np.array([[1, 2], [3, 4]])\r\n        a3D = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])\r\n        b1 = np.array([2., 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9])\r\n        b2 = np.array([[1., 1., 1., 0.],\r\n                       [1., 1., 0., 1.],\r\n                       [0., 0., -3., 0.],\r\n                       [0., 0., np.nan, -4.]])\r\n\r\n        print(dtypecheck(a1D, filterna=True, float2int=True, ).dtype)\r\n        print(dtypecheck(a2D, filterna=True, float2int=True, ).dtype)\r\n        print(dtypecheck(a3D, filterna=True, float2int=True, ).dtype)\r\n        print(dtypecheck(b1, filterna=True, float2int=True, ).dtype)\r\n        print(dtypecheck(b2, filterna=False, float2int=True, ).dtype)\r\n\r\n        # uint8\r\n        # uint8\r\n        # uint8\r\n        # float64\r\n        # float64\r\n\r\n```\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Check and convert the data type of a NumPy array based on a predefined set of data types.",
    "version": "0.11",
    "project_urls": {
        "Homepage": "https://github.com/hansalemaos/numpytypechecker"
    },
    "split_keywords": [
        "numpytypechecker",
        "np"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "80f3b5fd595b04243ae3829c3ee58132242eb84bd3bdad88e29f9fa9c0ea6d02",
                "md5": "bfcf14fa67bc47a12f02cefb662956bb",
                "sha256": "17be6850188885670278e2630d10d7957bfe9133b035504d319786602a472cd6"
            },
            "downloads": -1,
            "filename": "numpytypechecker-0.11-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "bfcf14fa67bc47a12f02cefb662956bb",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 21401,
            "upload_time": "2023-12-03T08:09:28",
            "upload_time_iso_8601": "2023-12-03T08:09:28.358851Z",
            "url": "https://files.pythonhosted.org/packages/80/f3/b5fd595b04243ae3829c3ee58132242eb84bd3bdad88e29f9fa9c0ea6d02/numpytypechecker-0.11-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "821d80be8aa50a17743c3b399f0bb3974056bca863712d1ac4bb95911ad201a5",
                "md5": "8bb113692e9b5bccff885a8c9c34d2c7",
                "sha256": "721a6feb6cfa6885e669bb314d35bac4ae179edc299cd7e901ffb2579f05cfec"
            },
            "downloads": -1,
            "filename": "numpytypechecker-0.11.tar.gz",
            "has_sig": false,
            "md5_digest": "8bb113692e9b5bccff885a8c9c34d2c7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 20918,
            "upload_time": "2023-12-03T08:09:30",
            "upload_time_iso_8601": "2023-12-03T08:09:30.429582Z",
            "url": "https://files.pythonhosted.org/packages/82/1d/80be8aa50a17743c3b399f0bb3974056bca863712d1ac4bb95911ad201a5/numpytypechecker-0.11.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-03 08:09:30",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "hansalemaos",
    "github_project": "numpytypechecker",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "numpytypechecker"
}
        
Elapsed time: 5.35163s