numstat


Namenumstat JSON
Version 0.2.0 PyPI version JSON
download
home_pageNone
SummaryNone
upload_time2024-06-03 19:17:39
maintainerNone
docs_urlNone
authoralex_past_15
requires_python<4.0,>=3.11
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Speed File Library #

## What is this? ##
The module allows you to work with files in just one line of code, without the need to manually open and close the file each time

## Quick Guide ##
The module is based on the following structure:

    
    f = open('data.txt')
    data = f.readlines()
    f.close()
    
Which Python provides by standard.


----------


### Using ###


Using the library is as simple and convenient as possible:

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "numstat",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.11",
    "maintainer_email": null,
    "keywords": null,
    "author": "alex_past_15",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/f9/48/93b09210aa9003febab19795ecb487d3f960b8152bf27b30f6de02e2e72e/numstat-0.2.0.tar.gz",
    "platform": null,
    "description": "# Speed File Library #\n\n## What is this? ##\nThe module allows you to work with files in just one line of code, without the need to manually open and close the file each time\n\n## Quick Guide ##\nThe module is based on the following structure:\n\n    \n    f = open('data.txt')\n    data = f.readlines()\n    f.close()\n    \nWhich Python provides by standard.\n\n\n----------\n\n\n### Using ###\n\n\nUsing the library is as simple and convenient as possible:\n",
    "bugtrack_url": null,
    "license": null,
    "summary": null,
    "version": "0.2.0",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b63d19d81683b2fad0231014d1f13c9dc55d7be073947fe6228b043de77f90bd",
                "md5": "d50bc0d6bd85777f0dec26d06874b2fc",
                "sha256": "86377097fa39843e31354e015ecbbf371e7095f239b788ef6e33e9d74342ca1c"
            },
            "downloads": -1,
            "filename": "numstat-0.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d50bc0d6bd85777f0dec26d06874b2fc",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.11",
            "size": 7293,
            "upload_time": "2024-06-03T19:17:38",
            "upload_time_iso_8601": "2024-06-03T19:17:38.757439Z",
            "url": "https://files.pythonhosted.org/packages/b6/3d/19d81683b2fad0231014d1f13c9dc55d7be073947fe6228b043de77f90bd/numstat-0.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f94893b09210aa9003febab19795ecb487d3f960b8152bf27b30f6de02e2e72e",
                "md5": "4cec0a58d82dd4e49cf19487ae134854",
                "sha256": "be75cf5eda5fa596afb4fd9b18f0a23e095f584c9b8e1d150842c1551429db18"
            },
            "downloads": -1,
            "filename": "numstat-0.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "4cec0a58d82dd4e49cf19487ae134854",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.11",
            "size": 7067,
            "upload_time": "2024-06-03T19:17:39",
            "upload_time_iso_8601": "2024-06-03T19:17:39.755480Z",
            "url": "https://files.pythonhosted.org/packages/f9/48/93b09210aa9003febab19795ecb487d3f960b8152bf27b30f6de02e2e72e/numstat-0.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-03 19:17:39",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "numstat"
}
        
Elapsed time: 1.24537s