"""
# ML Algorithms Library
A comprehensive collection of machine learning algorithm implementations.
## Installation
```bash
pip install ml_algorithms
```
## Usage
```python
from ml_algorithms import run
run()
```
This will display all the machine learning algorithm implementations including:
- Candidate Elimination
- ID3 Decision Tree
- Naive Bayes
- Backpropagation Neural Network
- EM Algorithm
- K-Nearest Neighbors
- Locally Weighted Regression
- Random Forest
- Support Vector Machine
## Requirements
- Python 3.6+
- NumPy
- Pandas
- Scikit-learn
- Matplotlib
"""
Raw data
{
"_id": null,
"home_page": null,
"name": "nunnpyy",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": "machine learning, algorithms, data science, AI, ML",
"author": "Your Name",
"author_email": "honniganurnl@email.com",
"download_url": "https://files.pythonhosted.org/packages/ad/1d/0e68d3afc2852d5ad85785ec61df7a49f21cc4f20fdebd2893a742f5cda7/nunnpyy-1.0.0.tar.gz",
"platform": null,
"description": "\"\"\"\r\n# ML Algorithms Library\r\n\r\nA comprehensive collection of machine learning algorithm implementations.\r\n\r\n## Installation\r\n\r\n```bash\r\npip install ml_algorithms\r\n```\r\n\r\n## Usage\r\n\r\n```python\r\nfrom ml_algorithms import run\r\nrun()\r\n```\r\n\r\nThis will display all the machine learning algorithm implementations including:\r\n- Candidate Elimination\r\n- ID3 Decision Tree\r\n- Naive Bayes\r\n- Backpropagation Neural Network\r\n- EM Algorithm\r\n- K-Nearest Neighbors\r\n- Locally Weighted Regression\r\n- Random Forest\r\n- Support Vector Machine\r\n\r\n## Requirements\r\n\r\n- Python 3.6+\r\n- NumPy\r\n- Pandas\r\n- Scikit-learn\r\n- Matplotlib\r\n\"\"\"\r\n",
"bugtrack_url": null,
"license": null,
"summary": "A collection of machine learning algorithms implementations",
"version": "1.0.0",
"project_urls": null,
"split_keywords": [
"machine learning",
" algorithms",
" data science",
" ai",
" ml"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "9dd75c567022e944889304fb5222d5f49dc8e486ec6ef5e1c911998da80536fc",
"md5": "5e4fb0ff6cedea081dfbf67fd82e6da9",
"sha256": "e0b06d8f8db3961b8f4a6136b2ce69a2e552493adb06236da35b5edcd422d98b"
},
"downloads": -1,
"filename": "nunnpyy-1.0.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "5e4fb0ff6cedea081dfbf67fd82e6da9",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 10454,
"upload_time": "2025-07-17T16:01:22",
"upload_time_iso_8601": "2025-07-17T16:01:22.018274Z",
"url": "https://files.pythonhosted.org/packages/9d/d7/5c567022e944889304fb5222d5f49dc8e486ec6ef5e1c911998da80536fc/nunnpyy-1.0.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ad1d0e68d3afc2852d5ad85785ec61df7a49f21cc4f20fdebd2893a742f5cda7",
"md5": "b09608d79194e04e81a652d7e70b0e62",
"sha256": "7ced8d9b38decf6d61963f37ebed57c725b5385dd8689187d0988648392dd770"
},
"downloads": -1,
"filename": "nunnpyy-1.0.0.tar.gz",
"has_sig": false,
"md5_digest": "b09608d79194e04e81a652d7e70b0e62",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 5995,
"upload_time": "2025-07-17T16:01:23",
"upload_time_iso_8601": "2025-07-17T16:01:23.625789Z",
"url": "https://files.pythonhosted.org/packages/ad/1d/0e68d3afc2852d5ad85785ec61df7a49f21cc4f20fdebd2893a742f5cda7/nunnpyy-1.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-17 16:01:23",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "nunnpyy"
}