nuovoLIRA


NamenuovoLIRA JSON
Version 0.6.0 PyPI version JSON
download
home_page
SummaryA Bayesian procedure to delineate the boundary of an extended astronomical object
upload_time2023-06-16 12:14:31
maintainer
docs_urlNone
authorBrendan Martin
requires_python
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            nuovoLIRA
==============================

# What is it? 
A method to implement the Bayesian model described here: [https://nuovolira.tiiny.site/](https://nuovolira.tiiny.site/).

# Installation 
```
pip install --upgrade pip 
pip install nuovoLIRA 
``` 

# Main Features 
- Algorithms that sample from the conditional distributions of the NuovoLIRA model 

# Source Code
The source code is currently hosted on GitHub at [https://github.com/bmartin9/nuovolira-pypi](https://github.com/bmartin9/nuovolira-pypi).

# Dependencies 
The external packages needed to use nuovoLIRA are listed in the requirements.txt file at [https://github.com/bmartin9/nuovolira-pypi](https://github.com/bmartin9/nuovolira-pypi). 

To create a python virtual environment and install these requirements, download requirements.txt from [https://github.com/bmartin9/nuovolira-pypi](https://github.com/bmartin9/nuovolira-pypi) and do for example 

``` 
python -m venv \path\to\myenv
pip install -r /path/to/requirements.txt
```

# Example Usage 
To sample from the conditional distribution of $Z$ (equation (33) in  [https://nuovolira.tiiny.site/](https://nuovolira.tiiny.site/)) using the Swendsen Wang algorithm do

```
from nuovoLIRA.models.deconvolver import * 
from numpy.random import default_rng

random_state = default_rng(seed=SEED) 
Z_init = np.random.choice([0, 1], size=(10,10), p=[1./3, 2./3])
data = np.random.randint(0,40,size=(10,10))

Z_sampler = Sample_Z(random_state=random_state,
                        initial_Z = Z_init,
                        beta = 2,
                        lam_b = 1,
                        lam_e = 20,
                        y = data
)

Z_new = Z_sampler.Z_update(Z_init) 
```

# Contact 
For issues/discussions please email b.martin22@imperial.ac.uk

Project Organization
------------

    ├── LICENSE
    ├── Makefile           <- Makefile with commands like `make data` or `make train`
    ├── README.md          <- The top-level README for developers using this project.
    ├── data
    │   ├── external       <- Data from third party sources.
    │   ├── interim        <- Intermediate data that has been transformed.
    │   ├── processed      <- The final, canonical data sets for modeling.
    │   └── raw            <- The original, immutable data dump.
    │
    ├── docs               <- A default Sphinx project; see sphinx-doc.org for details
    │
    ├── models             <- Trained and serialized models, model predictions, or model summaries
    │
    ├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
    │                         the creator's initials, and a short `-` delimited description, e.g.
    │                         `1.0-jqp-initial-data-exploration`.
    │
    ├── references         <- Data dictionaries, manuals, and all other explanatory materials.
    │
    ├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
    │   └── figures        <- Generated graphics and figures to be used in reporting
    │
    ├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
    │                         generated with `pip freeze > requirements.txt`
    │
    ├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
    ├── src                <- Source code for use in this project.
    │   ├── __init__.py    <- Makes src a Python module
    │   │
    │   ├── data           <- Scripts to download or generate data
    │   │   └── make_dataset.py
    │   │
    │   ├── features       <- Scripts to turn raw data into features for modeling
    │   │   └── build_features.py
    │   │
    │   ├── models         <- Scripts to train models and then use trained models to make
    │   │   │                 predictions
    │   │   ├── predict_model.py
    │   │   └── train_model.py
    │   │
    │   └── visualization  <- Scripts to create exploratory and results oriented visualizations
    │       └── visualize.py
    │
    └── tox.ini            <- tox file with settings for running tox; see tox.readthedocs.io


--------

<p><small>Project based on the <a target="_blank" href="https://drivendata.github.io/cookiecutter-data-science/">cookiecutter data science project template</a>. #cookiecutterdatascience</small></p>

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "nuovoLIRA",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Brendan Martin",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/1f/b2/3278fafd5aa72818c3b4b91676b22e99a2fbd62305e723f149e9521ff8f4/nuovoLIRA-0.6.0.tar.gz",
    "platform": null,
    "description": "nuovoLIRA\n==============================\n\n# What is it? \nA method to implement the Bayesian model described here: [https://nuovolira.tiiny.site/](https://nuovolira.tiiny.site/).\n\n# Installation \n```\npip install --upgrade pip \npip install nuovoLIRA \n``` \n\n# Main Features \n- Algorithms that sample from the conditional distributions of the NuovoLIRA model \n\n# Source Code\nThe source code is currently hosted on GitHub at [https://github.com/bmartin9/nuovolira-pypi](https://github.com/bmartin9/nuovolira-pypi).\n\n# Dependencies \nThe external packages needed to use nuovoLIRA are listed in the requirements.txt file at [https://github.com/bmartin9/nuovolira-pypi](https://github.com/bmartin9/nuovolira-pypi). \n\nTo create a python virtual environment and install these requirements, download requirements.txt from [https://github.com/bmartin9/nuovolira-pypi](https://github.com/bmartin9/nuovolira-pypi) and do for example \n\n``` \npython -m venv \\path\\to\\myenv\npip install -r /path/to/requirements.txt\n```\n\n# Example Usage \nTo sample from the conditional distribution of $Z$ (equation (33) in  [https://nuovolira.tiiny.site/](https://nuovolira.tiiny.site/)) using the Swendsen Wang algorithm do\n\n```\nfrom nuovoLIRA.models.deconvolver import * \nfrom numpy.random import default_rng\n\nrandom_state = default_rng(seed=SEED) \nZ_init = np.random.choice([0, 1], size=(10,10), p=[1./3, 2./3])\ndata = np.random.randint(0,40,size=(10,10))\n\nZ_sampler = Sample_Z(random_state=random_state,\n                        initial_Z = Z_init,\n                        beta = 2,\n                        lam_b = 1,\n                        lam_e = 20,\n                        y = data\n)\n\nZ_new = Z_sampler.Z_update(Z_init) \n```\n\n# Contact \nFor issues/discussions please email b.martin22@imperial.ac.uk\n\nProject Organization\n------------\n\n    \u251c\u2500\u2500 LICENSE\n    \u251c\u2500\u2500 Makefile           <- Makefile with commands like `make data` or `make train`\n    \u251c\u2500\u2500 README.md          <- The top-level README for developers using this project.\n    \u251c\u2500\u2500 data\n    \u2502\u00a0\u00a0 \u251c\u2500\u2500 external       <- Data from third party sources.\n    \u2502\u00a0\u00a0 \u251c\u2500\u2500 interim        <- Intermediate data that has been transformed.\n    \u2502\u00a0\u00a0 \u251c\u2500\u2500 processed      <- The final, canonical data sets for modeling.\n    \u2502\u00a0\u00a0 \u2514\u2500\u2500 raw            <- The original, immutable data dump.\n    \u2502\n    \u251c\u2500\u2500 docs               <- A default Sphinx project; see sphinx-doc.org for details\n    \u2502\n    \u251c\u2500\u2500 models             <- Trained and serialized models, model predictions, or model summaries\n    \u2502\n    \u251c\u2500\u2500 notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),\n    \u2502                         the creator's initials, and a short `-` delimited description, e.g.\n    \u2502                         `1.0-jqp-initial-data-exploration`.\n    \u2502\n    \u251c\u2500\u2500 references         <- Data dictionaries, manuals, and all other explanatory materials.\n    \u2502\n    \u251c\u2500\u2500 reports            <- Generated analysis as HTML, PDF, LaTeX, etc.\n    \u2502\u00a0\u00a0 \u2514\u2500\u2500 figures        <- Generated graphics and figures to be used in reporting\n    \u2502\n    \u251c\u2500\u2500 requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.\n    \u2502                         generated with `pip freeze > requirements.txt`\n    \u2502\n    \u251c\u2500\u2500 setup.py           <- makes project pip installable (pip install -e .) so src can be imported\n    \u251c\u2500\u2500 src                <- Source code for use in this project.\n    \u2502\u00a0\u00a0 \u251c\u2500\u2500 __init__.py    <- Makes src a Python module\n    \u2502   \u2502\n    \u2502\u00a0\u00a0 \u251c\u2500\u2500 data           <- Scripts to download or generate data\n    \u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u2514\u2500\u2500 make_dataset.py\n    \u2502   \u2502\n    \u2502\u00a0\u00a0 \u251c\u2500\u2500 features       <- Scripts to turn raw data into features for modeling\n    \u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u2514\u2500\u2500 build_features.py\n    \u2502   \u2502\n    \u2502\u00a0\u00a0 \u251c\u2500\u2500 models         <- Scripts to train models and then use trained models to make\n    \u2502   \u2502   \u2502                 predictions\n    \u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u251c\u2500\u2500 predict_model.py\n    \u2502\u00a0\u00a0 \u2502\u00a0\u00a0 \u2514\u2500\u2500 train_model.py\n    \u2502   \u2502\n    \u2502\u00a0\u00a0 \u2514\u2500\u2500 visualization  <- Scripts to create exploratory and results oriented visualizations\n    \u2502\u00a0\u00a0     \u2514\u2500\u2500 visualize.py\n    \u2502\n    \u2514\u2500\u2500 tox.ini            <- tox file with settings for running tox; see tox.readthedocs.io\n\n\n--------\n\n<p><small>Project based on the <a target=\"_blank\" href=\"https://drivendata.github.io/cookiecutter-data-science/\">cookiecutter data science project template</a>. #cookiecutterdatascience</small></p>\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A Bayesian procedure to delineate the boundary of an extended astronomical object",
    "version": "0.6.0",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1fb23278fafd5aa72818c3b4b91676b22e99a2fbd62305e723f149e9521ff8f4",
                "md5": "30e2d3d039ba57efccc53eb7a522507f",
                "sha256": "58749ce8247d029bdd7dd4f2407777c4529f118996589cdea02a1353fcb28255"
            },
            "downloads": -1,
            "filename": "nuovoLIRA-0.6.0.tar.gz",
            "has_sig": false,
            "md5_digest": "30e2d3d039ba57efccc53eb7a522507f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 13639,
            "upload_time": "2023-06-16T12:14:31",
            "upload_time_iso_8601": "2023-06-16T12:14:31.539388Z",
            "url": "https://files.pythonhosted.org/packages/1f/b2/3278fafd5aa72818c3b4b91676b22e99a2fbd62305e723f149e9521ff8f4/nuovoLIRA-0.6.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-06-16 12:14:31",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "nuovolira"
}
        
Elapsed time: 0.12604s