nvidia-nccl-cu11


Namenvidia-nccl-cu11 JSON
Version 2.21.5 PyPI version JSON
download
home_pagehttps://developer.nvidia.com/cuda-zone
SummaryNVIDIA Collective Communication Library (NCCL) Runtime
upload_time2024-04-03 15:33:12
maintainerNone
docs_urlNone
authorNvidia CUDA Installer Team
requires_python>=3
licenseNVIDIA Proprietary Software
keywords cuda nvidia runtime machine learning deep learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            NCCL (pronounced "Nickel") is a stand-alone library of standard collective communication routines for GPUs, implementing all-reduce, all-gather, reduce, broadcast, and reduce-scatter. It has been optimized to achieve high bandwidth on any platform using PCIe, NVLink, NVswitch, as well as networking using InfiniBand Verbs or TCP/IP sockets.

            

Raw data

            {
    "_id": null,
    "home_page": "https://developer.nvidia.com/cuda-zone",
    "name": "nvidia-nccl-cu11",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3",
    "maintainer_email": null,
    "keywords": "cuda, nvidia, runtime, machine learning, deep learning",
    "author": "Nvidia CUDA Installer Team",
    "author_email": "cuda_installer@nvidia.com",
    "download_url": null,
    "platform": null,
    "description": "NCCL (pronounced \"Nickel\") is a stand-alone library of standard collective communication routines for GPUs, implementing all-reduce, all-gather, reduce, broadcast, and reduce-scatter. It has been optimized to achieve high bandwidth on any platform using PCIe, NVLink, NVswitch, as well as networking using InfiniBand Verbs or TCP/IP sockets.\n",
    "bugtrack_url": null,
    "license": "NVIDIA Proprietary Software",
    "summary": "NVIDIA Collective Communication Library (NCCL) Runtime",
    "version": "2.21.5",
    "project_urls": {
        "Homepage": "https://developer.nvidia.com/cuda-zone"
    },
    "split_keywords": [
        "cuda",
        " nvidia",
        " runtime",
        " machine learning",
        " deep learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ac9a8b6a28b3b87d5fddab0e92cd835339eb8fbddaa71ae67518c8c1b3d05bae",
                "md5": "56cfedd6c979eb6671d047bcc7c6b92c",
                "sha256": "49d8350629c7888701d1fd200934942671cb5c728f49acc5a0b3a768820bed29"
            },
            "downloads": -1,
            "filename": "nvidia_nccl_cu11-2.21.5-py3-none-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "56cfedd6c979eb6671d047bcc7c6b92c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3",
            "size": 147811630,
            "upload_time": "2024-04-03T15:33:12",
            "upload_time_iso_8601": "2024-04-03T15:33:12.879896Z",
            "url": "https://files.pythonhosted.org/packages/ac/9a/8b6a28b3b87d5fddab0e92cd835339eb8fbddaa71ae67518c8c1b3d05bae/nvidia_nccl_cu11-2.21.5-py3-none-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-03 15:33:12",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "nvidia-nccl-cu11"
}
        
Elapsed time: 0.96153s