NCCL (pronounced "Nickel") is a stand-alone library of standard collective communication routines for GPUs, implementing all-reduce, all-gather, reduce, broadcast, and reduce-scatter. It has been optimized to achieve high bandwidth on any platform using PCIe, NVLink, NVswitch, as well as networking using InfiniBand Verbs or TCP/IP sockets.
Raw data
{
"_id": null,
"home_page": "https://developer.nvidia.com/cuda-zone",
"name": "nvidia-nccl-cu12",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3",
"maintainer_email": null,
"keywords": "cuda, nvidia, runtime, machine learning, deep learning",
"author": "Nvidia CUDA Installer Team",
"author_email": "compute_installer@nvidia.com",
"download_url": null,
"platform": null,
"description": "NCCL (pronounced \"Nickel\") is a stand-alone library of standard collective communication routines for GPUs, implementing all-reduce, all-gather, reduce, broadcast, and reduce-scatter. It has been optimized to achieve high bandwidth on any platform using PCIe, NVLink, NVswitch, as well as networking using InfiniBand Verbs or TCP/IP sockets.\n",
"bugtrack_url": null,
"license": "BSD-3-Clause",
"summary": "NVIDIA Collective Communication Library (NCCL) Runtime",
"version": "2.27.6",
"project_urls": {
"Homepage": "https://developer.nvidia.com/cuda-zone"
},
"split_keywords": [
"cuda",
" nvidia",
" runtime",
" machine learning",
" deep learning"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d2cb1e59f430360e73b203a0e9c9342a371b7d563e14cadb1cd76ed196d5f40c",
"md5": "b8a179a9f465e2a5514c33ae16af195a",
"sha256": "75f802521688026853ede67ec0337846214905a2f1571bb6e01ca3bb97c586ce"
},
"downloads": -1,
"filename": "nvidia_nccl_cu12-2.27.6-py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl",
"has_sig": false,
"md5_digest": "b8a179a9f465e2a5514c33ae16af195a",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3",
"size": 322600048,
"upload_time": "2025-07-15T18:24:26",
"upload_time_iso_8601": "2025-07-15T18:24:26.712842Z",
"url": "https://files.pythonhosted.org/packages/d2/cb/1e59f430360e73b203a0e9c9342a371b7d563e14cadb1cd76ed196d5f40c/nvidia_nccl_cu12-2.27.6-py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "afa0271bd709800f946e92128d9927ab7462559858a25b48f285a617d447bd48",
"md5": "7b7c263e841064b16d15ce552485ed0d",
"sha256": "8be9c0a7d7f95489f407593ad3842ba66bbb7c3370622c3592efb6dd67540968"
},
"downloads": -1,
"filename": "nvidia_nccl_cu12-2.27.6-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl",
"has_sig": false,
"md5_digest": "7b7c263e841064b16d15ce552485ed0d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3",
"size": 322547257,
"upload_time": "2025-07-15T18:24:45",
"upload_time_iso_8601": "2025-07-15T18:24:45.240758Z",
"url": "https://files.pythonhosted.org/packages/af/a0/271bd709800f946e92128d9927ab7462559858a25b48f285a617d447bd48/nvidia_nccl_cu12-2.27.6-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-15 18:24:26",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "nvidia-nccl-cu12"
}