NCCL (pronounced "Nickel") is a stand-alone library of standard collective communication routines for GPUs, implementing all-reduce, all-gather, reduce, broadcast, and reduce-scatter. It has been optimized to achieve high bandwidth on any platform using PCIe, NVLink, NVswitch, as well as networking using InfiniBand Verbs or TCP/IP sockets.
            
         
        Raw data
        
            {
    "_id": null,
    "home_page": "https://developer.nvidia.com/cuda-zone",
    "name": "nvidia-nccl-cu13",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3",
    "maintainer_email": null,
    "keywords": "cuda, nvidia, runtime, machine learning, deep learning",
    "author": "Nvidia CUDA Installer Team",
    "author_email": "compute_installer@nvidia.com",
    "download_url": null,
    "platform": null,
    "description": "NCCL (pronounced \"Nickel\") is a stand-alone library of standard collective communication routines for GPUs, implementing all-reduce, all-gather, reduce, broadcast, and reduce-scatter. It has been optimized to achieve high bandwidth on any platform using PCIe, NVLink, NVswitch, as well as networking using InfiniBand Verbs or TCP/IP sockets.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "NVIDIA Collective Communication Library (NCCL) Runtime",
    "version": "2.28.7",
    "project_urls": {
        "Homepage": "https://developer.nvidia.com/cuda-zone"
    },
    "split_keywords": [
        "cuda",
        " nvidia",
        " runtime",
        " machine learning",
        " deep learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e289b24132be74a263e890bb3f19bafc0132f7149699c7300f5d71b60eac208a",
                "md5": "c60bf7a13ab42485d4ff41e881ddb6ec",
                "sha256": "7b386e887830666e6fce17287a00173cc78a7e9abf158138b99a45f59e9904e2"
            },
            "downloads": -1,
            "filename": "nvidia_nccl_cu13-2.28.7-py3-none-manylinux_2_18_aarch64.whl",
            "has_sig": false,
            "md5_digest": "c60bf7a13ab42485d4ff41e881ddb6ec",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3",
            "size": 196534578,
            "upload_time": "2025-10-21T23:16:05",
            "upload_time_iso_8601": "2025-10-21T23:16:05.835578Z",
            "url": "https://files.pythonhosted.org/packages/e2/89/b24132be74a263e890bb3f19bafc0132f7149699c7300f5d71b60eac208a/nvidia_nccl_cu13-2.28.7-py3-none-manylinux_2_18_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0e00677ca131172fea165172dfc0f8363181a651605e066b5ca9cf8c1eb2f1b7",
                "md5": "6cff270b398c5bef5eb839307ebc5495",
                "sha256": "f9988ff615aa2e21dffc606a8e5861fe41f4140b4540856a780009c4b1c3626f"
            },
            "downloads": -1,
            "filename": "nvidia_nccl_cu13-2.28.7-py3-none-manylinux_2_18_x86_64.whl",
            "has_sig": false,
            "md5_digest": "6cff270b398c5bef5eb839307ebc5495",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3",
            "size": 196467404,
            "upload_time": "2025-10-21T23:16:19",
            "upload_time_iso_8601": "2025-10-21T23:16:19.044581Z",
            "url": "https://files.pythonhosted.org/packages/0e/00/677ca131172fea165172dfc0f8363181a651605e066b5ca9cf8c1eb2f1b7/nvidia_nccl_cu13-2.28.7-py3-none-manylinux_2_18_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-21 23:16:05",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "nvidia-nccl-cu13"
}