nvidia-nvjpeg2k-tegra-cu11


Namenvidia-nvjpeg2k-tegra-cu11 JSON
Version 0.8.1.40 PyPI version JSON
download
home_pagehttps://developer.nvidia.com/nvjpeg
SummaryNVIDIA nvJPEG2000 native runtime libraries
upload_time2024-12-03 19:35:19
maintainerNone
docs_urlNone
authorNVIDIA Corporation
requires_python>=3
licenseNVIDIA Proprietary Software
keywords cuda nvidia jpeg2000 codec
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ###############################################################
nvJPEG2000: CUDA accelerated JPEG 2000 Codec Library
###############################################################

`nvidia_nvjpeg2k_cuXX <https://developer.nvidia.com/nvjpeg>`_ is a high-performance JPEG 2000 CUDA library .


Documentation
=============

Refer to https://docs.nvidia.com/cuda/nvjpeg2000/index.html for documentation.

Installation
============


.. code-block:: bash

   pip install nvidia_nvjpeg2k_cuXX

where XX is the CUDA major version (currently CUDA 11 & 12 are supported).


            

Raw data

            {
    "_id": null,
    "home_page": "https://developer.nvidia.com/nvjpeg",
    "name": "nvidia-nvjpeg2k-tegra-cu11",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3",
    "maintainer_email": null,
    "keywords": "cuda, nvidia, jpeg2000, codec",
    "author": "NVIDIA Corporation",
    "author_email": "cuda_installer@nvidia.com",
    "download_url": null,
    "platform": null,
    "description": "###############################################################\nnvJPEG2000: CUDA accelerated JPEG 2000 Codec Library\n###############################################################\n\n`nvidia_nvjpeg2k_cuXX <https://developer.nvidia.com/nvjpeg>`_ is a high-performance JPEG 2000 CUDA library .\n\n\nDocumentation\n=============\n\nRefer to https://docs.nvidia.com/cuda/nvjpeg2000/index.html for documentation.\n\nInstallation\n============\n\n\n.. code-block:: bash\n\n   pip install nvidia_nvjpeg2k_cuXX\n\nwhere XX is the CUDA major version (currently CUDA 11 & 12 are supported).\n\n",
    "bugtrack_url": null,
    "license": "NVIDIA Proprietary Software",
    "summary": "NVIDIA nvJPEG2000 native runtime libraries",
    "version": "0.8.1.40",
    "project_urls": {
        "Homepage": "https://developer.nvidia.com/nvjpeg"
    },
    "split_keywords": [
        "cuda",
        " nvidia",
        " jpeg2000",
        " codec"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e5a8432cdd8703fa9b8a6c1e86d5c3fec3dd19290099ef5d1b107f74a468fd81",
                "md5": "b934a66749b5c9bb757c324631d459a4",
                "sha256": "cd3251e9d63e0df4471b3ab3760efcc420677f4299a1af893544e18dc36df7ba"
            },
            "downloads": -1,
            "filename": "nvidia_nvjpeg2k_tegra_cu11-0.8.1.40-py3-none-manylinux2014_aarch64.whl",
            "has_sig": false,
            "md5_digest": "b934a66749b5c9bb757c324631d459a4",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3",
            "size": 1973223,
            "upload_time": "2024-12-03T19:35:19",
            "upload_time_iso_8601": "2024-12-03T19:35:19.744065Z",
            "url": "https://files.pythonhosted.org/packages/e5/a8/432cdd8703fa9b8a6c1e86d5c3fec3dd19290099ef5d1b107f74a468fd81/nvidia_nvjpeg2k_tegra_cu11-0.8.1.40-py3-none-manylinux2014_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-03 19:35:19",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "nvidia-nvjpeg2k-tegra-cu11"
}
        
Elapsed time: 5.46345s