nvidia-nvjpeg2k-tegra-cu13


Namenvidia-nvjpeg2k-tegra-cu13 JSON
Version 0.9.0.43 PyPI version JSON
download
home_pagehttps://developer.nvidia.com/nvjpeg
SummaryNVIDIA nvJPEG2000 native runtime libraries
upload_time2025-08-06 22:22:41
maintainerNone
docs_urlNone
authorNVIDIA Corporation
requires_python>=3
licenseNVIDIA Proprietary Software
keywords cuda nvidia jpeg2000 codec
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ###############################################################
nvJPEG2000: CUDA accelerated JPEG 2000 Codec Library
###############################################################

`nvidia_nvjpeg2k_cuXX <https://developer.nvidia.com/nvjpeg>`_ is a high-performance JPEG 2000 CUDA library .


Documentation
=============

Refer to https://docs.nvidia.com/cuda/nvjpeg2000/index.html for documentation.

Installation
============


.. code-block:: bash

   pip install nvidia_nvjpeg2k_cuXX

where XX is the CUDA major version (currently CUDA 11, 12, & 13 are supported).


            

Raw data

            {
    "_id": null,
    "home_page": "https://developer.nvidia.com/nvjpeg",
    "name": "nvidia-nvjpeg2k-tegra-cu13",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3",
    "maintainer_email": null,
    "keywords": "cuda, nvidia, jpeg2000, codec",
    "author": "NVIDIA Corporation",
    "author_email": "cuda_installer@nvidia.com",
    "download_url": null,
    "platform": null,
    "description": "###############################################################\nnvJPEG2000: CUDA accelerated JPEG 2000 Codec Library\n###############################################################\n\n`nvidia_nvjpeg2k_cuXX <https://developer.nvidia.com/nvjpeg>`_ is a high-performance JPEG 2000 CUDA library .\n\n\nDocumentation\n=============\n\nRefer to https://docs.nvidia.com/cuda/nvjpeg2000/index.html for documentation.\n\nInstallation\n============\n\n\n.. code-block:: bash\n\n   pip install nvidia_nvjpeg2k_cuXX\n\nwhere XX is the CUDA major version (currently CUDA 11, 12, & 13 are supported).\n\n",
    "bugtrack_url": null,
    "license": "NVIDIA Proprietary Software",
    "summary": "NVIDIA nvJPEG2000 native runtime libraries",
    "version": "0.9.0.43",
    "project_urls": {
        "Homepage": "https://developer.nvidia.com/nvjpeg"
    },
    "split_keywords": [
        "cuda",
        " nvidia",
        " jpeg2000",
        " codec"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fdc5da392ff1b91dea23a1d7b6d45ede2196f610c0e8b4bb8350407d3e507be7",
                "md5": "dc795a0d62b3329d1a16022db9f29315",
                "sha256": "112dbe95fd5d2d10f6352142a2e5e5e90dbf30cfc4a7b9b4d94948ae7248fa4b"
            },
            "downloads": -1,
            "filename": "nvidia_nvjpeg2k_tegra_cu13-0.9.0.43-py3-none-manylinux2014_aarch64.whl",
            "has_sig": false,
            "md5_digest": "dc795a0d62b3329d1a16022db9f29315",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3",
            "size": 1766767,
            "upload_time": "2025-08-06T22:22:41",
            "upload_time_iso_8601": "2025-08-06T22:22:41.032990Z",
            "url": "https://files.pythonhosted.org/packages/fd/c5/da392ff1b91dea23a1d7b6d45ede2196f610c0e8b4bb8350407d3e507be7/nvidia_nvjpeg2k_tegra_cu13-0.9.0.43-py3-none-manylinux2014_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-06 22:22:41",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "nvidia-nvjpeg2k-tegra-cu13"
}
        
Elapsed time: 0.93145s