nvidia-nvshmem-cu11


Namenvidia-nvshmem-cu11 JSON
Version 3.1.7 PyPI version JSON
download
home_pagehttps://developer.nvidia.com/cuda-zone
SummaryNVSHMEM creates a global address space that provides efficient and scalable communication for NVIDIA GPU clusters.
upload_time2024-11-01 22:27:32
maintainerNone
docs_urlNone
authorNvidia CUDA Installer Team
requires_python>=3
licenseBSD-3-Clause
keywords cuda nvidia runtime machine learning deep learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            NVSHMEM is a parallel programming interface based on OpenSHMEM that provides efficient and scalable communication for NVIDIA GPU clusters. NVSHMEM creates a global address space for data that spans the memory of multiple GPUs and can be accessed with fine-grained GPU-initiated operations, CPU-initiated operations, and operations on CUDA streams.

            

Raw data

            {
    "_id": null,
    "home_page": "https://developer.nvidia.com/cuda-zone",
    "name": "nvidia-nvshmem-cu11",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3",
    "maintainer_email": null,
    "keywords": "cuda, nvidia, runtime, machine learning, deep learning",
    "author": "Nvidia CUDA Installer Team",
    "author_email": "compute_installer@nvidia.com",
    "download_url": null,
    "platform": null,
    "description": "NVSHMEM is a parallel programming interface based on OpenSHMEM that provides efficient and scalable communication for NVIDIA GPU clusters. NVSHMEM creates a global address space for data that spans the memory of multiple GPUs and can be accessed with fine-grained GPU-initiated operations, CPU-initiated operations, and operations on CUDA streams.\n",
    "bugtrack_url": null,
    "license": "BSD-3-Clause",
    "summary": "NVSHMEM creates a global address space that provides efficient and scalable communication for NVIDIA GPU clusters.",
    "version": "3.1.7",
    "project_urls": {
        "Homepage": "https://developer.nvidia.com/cuda-zone"
    },
    "split_keywords": [
        "cuda",
        " nvidia",
        " runtime",
        " machine learning",
        " deep learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4a983c33792fe8c95c15967a5776238e5285eedcf2eaad896572f2b6019075e7",
                "md5": "fd19eab38ea34b949ed8b2123ec9e21b",
                "sha256": "5fe5a154667da3e1395f4d17074be45e426c96a29351522f626a3fa3f8a14ce1"
            },
            "downloads": -1,
            "filename": "nvidia_nvshmem_cu11-3.1.7-py3-none-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "fd19eab38ea34b949ed8b2123ec9e21b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3",
            "size": 48545005,
            "upload_time": "2024-11-01T22:27:32",
            "upload_time_iso_8601": "2024-11-01T22:27:32.259631Z",
            "url": "https://files.pythonhosted.org/packages/4a/98/3c33792fe8c95c15967a5776238e5285eedcf2eaad896572f2b6019075e7/nvidia_nvshmem_cu11-3.1.7-py3-none-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-01 22:27:32",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "nvidia-nvshmem-cu11"
}
        
Elapsed time: 0.37852s