# OhMyTable
![example](./assets/example.jpg)
## Install
```bash
pip install ohmytable
```
## Quick Start
Use as a package
```python
from ohmytable import OhMyTable
image_path = "/path/to/your_image_contains_table"
ohmytable = OhMyTable(device="cpu") # cpu/mps/cuda
htmls = ohmytable(image_path)
# The entire pipeline outputs table structure represented in HTML.
print(htmls)
# Visualize and save the results of all models in the pipeline.
from ohmytable.callback import VisualizeCallback
ohmytable(image_path, callbacks=[VisualizeCallback(image_path, "./tmp")])
```
Start a gradio web demo:
```bash
git clone https://github.com/Sanster/OhMyTable.git
cd OhMyTable
pip install gradio typer
python3 gradio_demo.py
```
## Limitation
- Table Structure Recognition model is trained with max output length 1024(about 150 table cell boxes.)
- The model effect will be better with less padding around the table image.
## Acknowledgement
- [PaddleOCR2Pytorch](https://github.com/frotms/PaddleOCR2Pytorch)
- [unitable](https://github.com/poloclub/unitable)
- [keremberke/yolov8m-table-extraction)](https://huggingface.co/keremberke/yolov8m-table-extraction)
Raw data
{
"_id": null,
"home_page": null,
"name": "ohmytable",
"maintainer": "Sanster",
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "deep-learning, table-structure-recognition",
"author": "Sanster",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/38/aa/d8273e91d5ce16043edd62933a07e0fc9165da4f86014c74a8ba9a896635/ohmytable-0.1.0.tar.gz",
"platform": null,
"description": "# OhMyTable\n\n![example](./assets/example.jpg)\n\n## Install\n\n```bash\npip install ohmytable\n```\n\n## Quick Start\n\nUse as a package\n\n```python\nfrom ohmytable import OhMyTable\n\nimage_path = \"/path/to/your_image_contains_table\"\nohmytable = OhMyTable(device=\"cpu\") # cpu/mps/cuda\nhtmls = ohmytable(image_path)\n# The entire pipeline outputs table structure represented in HTML.\nprint(htmls)\n\n# Visualize and save the results of all models in the pipeline.\nfrom ohmytable.callback import VisualizeCallback\n\nohmytable(image_path, callbacks=[VisualizeCallback(image_path, \"./tmp\")])\n```\n\nStart a gradio web demo:\n\n```bash\ngit clone https://github.com/Sanster/OhMyTable.git\ncd OhMyTable\npip install gradio typer\npython3 gradio_demo.py\n```\n\n## Limitation\n\n- Table Structure Recognition model is trained with max output length 1024(about 150 table cell boxes.)\n- The model effect will be better with less padding around the table image.\n\n## Acknowledgement\n\n- [PaddleOCR2Pytorch](https://github.com/frotms/PaddleOCR2Pytorch)\n- [unitable](https://github.com/poloclub/unitable)\n- [keremberke/yolov8m-table-extraction)](https://huggingface.co/keremberke/yolov8m-table-extraction)\n",
"bugtrack_url": null,
"license": null,
"summary": null,
"version": "0.1.0",
"project_urls": {
"Bug Reports": "https://github.com/Sanster/ohmytable/issues",
"Source": "https://github.com/Sanster/ohmytable/"
},
"split_keywords": [
"deep-learning",
" table-structure-recognition"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "4c5e7412300f6899220b68985f020fc1876bbb6b712ef69eaf420e05ba5c49f4",
"md5": "78769d704fc4958bf6440918d5cd8032",
"sha256": "cbe3d65566964cef954fae39aec2338b5b3aa3265b88b57b6696515f21fcc252"
},
"downloads": -1,
"filename": "ohmytable-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "78769d704fc4958bf6440918d5cd8032",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 59416,
"upload_time": "2024-07-25T14:36:31",
"upload_time_iso_8601": "2024-07-25T14:36:31.420523Z",
"url": "https://files.pythonhosted.org/packages/4c/5e/7412300f6899220b68985f020fc1876bbb6b712ef69eaf420e05ba5c49f4/ohmytable-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "38aad8273e91d5ce16043edd62933a07e0fc9165da4f86014c74a8ba9a896635",
"md5": "9d4808886dea834bf997f7efa586cbff",
"sha256": "8eb15eae5c2d3f867a2e6571fd4dfc3ad4123e2caebd4e89179e91341935e579"
},
"downloads": -1,
"filename": "ohmytable-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "9d4808886dea834bf997f7efa586cbff",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 45195,
"upload_time": "2024-07-25T14:36:33",
"upload_time_iso_8601": "2024-07-25T14:36:33.364823Z",
"url": "https://files.pythonhosted.org/packages/38/aa/d8273e91d5ce16043edd62933a07e0fc9165da4f86014c74a8ba9a896635/ohmytable-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-07-25 14:36:33",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Sanster",
"github_project": "ohmytable",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "ohmytable"
}