olympict


Nameolympict JSON
Version 1.4.0 PyPI version JSON
download
home_pagehttps://gitlab.com/gabraken/olympict
SummaryA powerful parallel pipelining tool for image processing
upload_time2024-09-15 09:09:07
maintainerNone
docs_urlNone
authorGabriel Kasser
requires_python<3.13,>=3.9
licenseMIT
keywords image parallel multiprocessing pipeline
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Olympict

![coverage](https://gitlab.com/gabraken/olympict/badges/master/coverage.svg?job=tests)![status](https://gitlab.com/gabraken/olympict/badges/master/pipeline.svg)

![Olympict](https://gitlab.com/gabraken/olympict/-/raw/master/Olympict.png)


Based on [olympipe](https://pypi.org/project/olympipe/), this project will make image processing pipelines easy to use using the basic multiprocessing module. 
This module uses type checking to ensure your data process validity from the start.

## Basic image processing pipeline

### Loading images from a folder and resize them to a new folder

```python
from olympict import ImagePipeline

p0 = ImagePipeline.load_folder("./examples") # path containing the images
p1 = p0.resize((150, 250)) # new width, new height
p2 = p1.save_to_folder("./resized_examples") # path to save the images
p2.wait_for_completion() # the code blocks here until all images are processed

print("Finished resizing")
```

### Loading images from a folder and overwrite them with a new size

```python
from olympict import ImagePipeline

p0 = ImagePipeline.load_folder("./examples") # path containing the images
p1 = p0.resize((150, 250))
p2 = p1.save() # overwrite the images
p2.wait_for_completion()
```

### Loading images from a folder and resize them keeping the aspect ratio using a padding color

```python
from olympict import ImagePipeline
blue = (255, 0, 0) # Colors are BGR to match opencv format

p0 = ImagePipeline.load_folder("./examples")
p1 = p0.resize((150, 250), pad_color=blue)
p2 = p1.save() # overwrite the images
p2.wait_for_completion()
```

### Load image to make a specific operation

```python
from olympict import ImagePipeline, Img

def operation(image: Img) -> Img:
    # set the green channel as a mean of blue and red channels
    img[:, :, 1] = (img[:, :, 0] + img[:, :, 2]) / 2
    return img

p0 = ImagePipeline.load_folder("./examples")
p1 = p0.task_img(operation)
p2 = p1.save() # overwrite the images
p2.wait_for_completion()
```


### Check ongoing operation

```python
from olympict import ImagePipeline, Img

def operation(image: Img) -> Img:
    # set the green channel as a mean of blue and red channels
    img[:, :, 1] = (img[:, :, 0] + img[:, :, 2]) / 2
    return img

p0 = ImagePipeline.load_folder("./examples").debug_window("Raw image")
p1 = p0.task_img(operation).debug_window("Processed image")
p2 = p1.save() # overwrite the images
p2.wait_for_completion()
```

### Load a video and process each individual frame

```python
from olympict import VideoPipeline

p0 = VideoPipeline.load_folder("./examples") # will load .mp4 and .mkv files

p1 = p0.to_sequence() # split each video frame into a basic image

p2 = p1.resize((100, 3), (255, 255, 255)) # resize each image with white padding

p3 = p2.save_to_folder("./sequence") # save images individually

p3.wait_for_completion()

img_paths = glob("./sequence/*.png") # count images

print("Number of images:", len(img_paths))
```


### Complex example with preview windows
```python
import os
from random import randint
import re
import time
from olympict import ImagePipeline
from olympict.files.o_image import OlympImage


def img_simple_order(path: str) -> int:
    number_pattern = r"\d+"
    res = re.findall(number_pattern, os.path.basename(path))

    return int(res[0])


if __name__ == "__main__":

    def wait(x: OlympImage):
        time.sleep(0.1)
        print(x.path)
        return x

    def generator():
        for i in range(96):
            img = np.zeros((256, 256, 3), np.uint8)
            img[i, :, :] = (255, 255, 255)

            o = OlympImage()
            o.path = f'/tmp/{i}.png'
            o.img = img
            yield o
        return

    p = (
        ImagePipeline(generator())
        .task(wait)
        .debug_window("start it")
        .task_img(lambda x: x[::-1, :, :])
        .debug_window("flip it")
        .keep_each_frame_in(1, 3)
        .debug_window("stuttered")
        .draw_bboxes(
            lambda x: [
                (
                    (
                        randint(0, 50),
                        randint(0, 50),
                        randint(100, 200),
                        randint(100, 200),
                        "change",
                        0.5,
                    ),
                    (randint(0, 255), 25, 245),
                )
            ]
        )
        .debug_window("bboxed")
    )

    p.wait_for_completion()

```

## /!\ To use Huggingface Models, you must install this package with [hf] extras
```bash
poetry add olympict[hf]
or
pip install olympict[hf]
```

### Use with Huggingface image classification models
```python

from olympict import ImagePipeline
from olympict.files.o_image import OlympImage

def print_metas(x: OlympImage):
    print(x.metadata)
    return x

if __name__ == "__main__":
    # very important, without this processes will get stuck
    from torch.multiprocessing import set_start_method
    set_start_method("spawn")

    (
        ImagePipeline.load_folder("./classif")
        .classify("google/mobilenet_v2_1.0_224")
        .task(print_metas)
    ).wait_for_completion()

```

This project is still an early version, feedback is very helpful.
            

Raw data

            {
    "_id": null,
    "home_page": "https://gitlab.com/gabraken/olympict",
    "name": "olympict",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.13,>=3.9",
    "maintainer_email": null,
    "keywords": "image, parallel, multiprocessing, pipeline",
    "author": "Gabriel Kasser",
    "author_email": "gabriel.kasser@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/72/f9/d98a6d6864127c82cb26c2b50bf4dac03ed3506ef502ef3f24a9142c18fc/olympict-1.4.0.tar.gz",
    "platform": null,
    "description": "# Olympict\n\n![coverage](https://gitlab.com/gabraken/olympict/badges/master/coverage.svg?job=tests)![status](https://gitlab.com/gabraken/olympict/badges/master/pipeline.svg)\n\n![Olympict](https://gitlab.com/gabraken/olympict/-/raw/master/Olympict.png)\n\n\nBased on [olympipe](https://pypi.org/project/olympipe/), this project will make image processing pipelines easy to use using the basic multiprocessing module. \nThis module uses type checking to ensure your data process validity from the start.\n\n## Basic image processing pipeline\n\n### Loading images from a folder and resize them to a new folder\n\n```python\nfrom olympict import ImagePipeline\n\np0 = ImagePipeline.load_folder(\"./examples\") # path containing the images\np1 = p0.resize((150, 250)) # new width, new height\np2 = p1.save_to_folder(\"./resized_examples\") # path to save the images\np2.wait_for_completion() # the code blocks here until all images are processed\n\nprint(\"Finished resizing\")\n```\n\n### Loading images from a folder and overwrite them with a new size\n\n```python\nfrom olympict import ImagePipeline\n\np0 = ImagePipeline.load_folder(\"./examples\") # path containing the images\np1 = p0.resize((150, 250))\np2 = p1.save() # overwrite the images\np2.wait_for_completion()\n```\n\n### Loading images from a folder and resize them keeping the aspect ratio using a padding color\n\n```python\nfrom olympict import ImagePipeline\nblue = (255, 0, 0) # Colors are BGR to match opencv format\n\np0 = ImagePipeline.load_folder(\"./examples\")\np1 = p0.resize((150, 250), pad_color=blue)\np2 = p1.save() # overwrite the images\np2.wait_for_completion()\n```\n\n### Load image to make a specific operation\n\n```python\nfrom olympict import ImagePipeline, Img\n\ndef operation(image: Img) -> Img:\n    # set the green channel as a mean of blue and red channels\n    img[:, :, 1] = (img[:, :, 0] + img[:, :, 2]) / 2\n    return img\n\np0 = ImagePipeline.load_folder(\"./examples\")\np1 = p0.task_img(operation)\np2 = p1.save() # overwrite the images\np2.wait_for_completion()\n```\n\n\n### Check ongoing operation\n\n```python\nfrom olympict import ImagePipeline, Img\n\ndef operation(image: Img) -> Img:\n    # set the green channel as a mean of blue and red channels\n    img[:, :, 1] = (img[:, :, 0] + img[:, :, 2]) / 2\n    return img\n\np0 = ImagePipeline.load_folder(\"./examples\").debug_window(\"Raw image\")\np1 = p0.task_img(operation).debug_window(\"Processed image\")\np2 = p1.save() # overwrite the images\np2.wait_for_completion()\n```\n\n### Load a video and process each individual frame\n\n```python\nfrom olympict import VideoPipeline\n\np0 = VideoPipeline.load_folder(\"./examples\") # will load .mp4 and .mkv files\n\np1 = p0.to_sequence() # split each video frame into a basic image\n\np2 = p1.resize((100, 3), (255, 255, 255)) # resize each image with white padding\n\np3 = p2.save_to_folder(\"./sequence\") # save images individually\n\np3.wait_for_completion()\n\nimg_paths = glob(\"./sequence/*.png\") # count images\n\nprint(\"Number of images:\", len(img_paths))\n```\n\n\n### Complex example with preview windows\n```python\nimport os\nfrom random import randint\nimport re\nimport time\nfrom olympict import ImagePipeline\nfrom olympict.files.o_image import OlympImage\n\n\ndef img_simple_order(path: str) -> int:\n    number_pattern = r\"\\d+\"\n    res = re.findall(number_pattern, os.path.basename(path))\n\n    return int(res[0])\n\n\nif __name__ == \"__main__\":\n\n    def wait(x: OlympImage):\n        time.sleep(0.1)\n        print(x.path)\n        return x\n\n    def generator():\n        for i in range(96):\n            img = np.zeros((256, 256, 3), np.uint8)\n            img[i, :, :] = (255, 255, 255)\n\n            o = OlympImage()\n            o.path = f'/tmp/{i}.png'\n            o.img = img\n            yield o\n        return\n\n    p = (\n        ImagePipeline(generator())\n        .task(wait)\n        .debug_window(\"start it\")\n        .task_img(lambda x: x[::-1, :, :])\n        .debug_window(\"flip it\")\n        .keep_each_frame_in(1, 3)\n        .debug_window(\"stuttered\")\n        .draw_bboxes(\n            lambda x: [\n                (\n                    (\n                        randint(0, 50),\n                        randint(0, 50),\n                        randint(100, 200),\n                        randint(100, 200),\n                        \"change\",\n                        0.5,\n                    ),\n                    (randint(0, 255), 25, 245),\n                )\n            ]\n        )\n        .debug_window(\"bboxed\")\n    )\n\n    p.wait_for_completion()\n\n```\n\n## /!\\ To use Huggingface Models, you must install this package with [hf] extras\n```bash\npoetry add olympict[hf]\nor\npip install olympict[hf]\n```\n\n### Use with Huggingface image classification models\n```python\n\nfrom olympict import ImagePipeline\nfrom olympict.files.o_image import OlympImage\n\ndef print_metas(x: OlympImage):\n    print(x.metadata)\n    return x\n\nif __name__ == \"__main__\":\n    # very important, without this processes will get stuck\n    from torch.multiprocessing import set_start_method\n    set_start_method(\"spawn\")\n\n    (\n        ImagePipeline.load_folder(\"./classif\")\n        .classify(\"google/mobilenet_v2_1.0_224\")\n        .task(print_metas)\n    ).wait_for_completion()\n\n```\n\nThis project is still an early version, feedback is very helpful.",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A powerful parallel pipelining tool for image processing",
    "version": "1.4.0",
    "project_urls": {
        "Documentation": "https://gitlab.com/gabraken/olympict/-/blob/master/README.md",
        "Homepage": "https://gitlab.com/gabraken/olympict",
        "Repository": "https://gitlab.com/gabraken/olympict"
    },
    "split_keywords": [
        "image",
        " parallel",
        " multiprocessing",
        " pipeline"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "87cdd79a1b3fe31283739191a69475de76261348014b7c13638f7b73601a4fa1",
                "md5": "7dbe0b2b6ce1504d486301d939332282",
                "sha256": "2a03fa3755eb174c8328c7ac881ce354f4f473cb6a17267e0619225d127b7892"
            },
            "downloads": -1,
            "filename": "olympict-1.4.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7dbe0b2b6ce1504d486301d939332282",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.13,>=3.9",
            "size": 26516,
            "upload_time": "2024-09-15T09:09:05",
            "upload_time_iso_8601": "2024-09-15T09:09:05.905888Z",
            "url": "https://files.pythonhosted.org/packages/87/cd/d79a1b3fe31283739191a69475de76261348014b7c13638f7b73601a4fa1/olympict-1.4.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "72f9d98a6d6864127c82cb26c2b50bf4dac03ed3506ef502ef3f24a9142c18fc",
                "md5": "a3978c00b4c54578837d2c74ab7b667b",
                "sha256": "cff45078eb9736858b7b0d0d8961c92cf30fba048db673816ad91345cc43e041"
            },
            "downloads": -1,
            "filename": "olympict-1.4.0.tar.gz",
            "has_sig": false,
            "md5_digest": "a3978c00b4c54578837d2c74ab7b667b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.13,>=3.9",
            "size": 17253,
            "upload_time": "2024-09-15T09:09:07",
            "upload_time_iso_8601": "2024-09-15T09:09:07.522595Z",
            "url": "https://files.pythonhosted.org/packages/72/f9/d98a6d6864127c82cb26c2b50bf4dac03ed3506ef502ef3f24a9142c18fc/olympict-1.4.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-15 09:09:07",
    "github": false,
    "gitlab": true,
    "bitbucket": false,
    "codeberg": false,
    "gitlab_user": "gabraken",
    "gitlab_project": "olympict",
    "lcname": "olympict"
}
        
Elapsed time: 0.69366s