omega


Nameomega JSON
Version 0.4.0 PyPI version JSON
download
home_pagehttps://github.com/tulip-control/omega
SummarySymbolic algorithms for solving games of infinite duration.
upload_time2024-02-16 15:25:15
maintainer
docs_urlNone
authorCaltech Control and Dynamical Systems
requires_python>=3.11
licenseBSD
keywords first-order propositional logic quantifier forall exists fixpoint mu-calculus formula flatten bitblaster bitvector arithmetic binary decision diagram symbolic games specification system assume guarantee satisfiability enumeration state machine transition system automaton automata streett rabin temporal logic temporal tester gr1 generalized reactivity
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Build Status][build_img]][ci]


About
=====

A package of symbolic algorithms using binary decision diagrams (BDDs)
for synthesizing implementations from [temporal logic specifications][specs].
This is useful for designing systems, especially vehicles that carry humans.


- [Synthesis][synthesis] algorithms for [Moore][moore] or [Mealy][mealy]
  implementations of:

  - [generalized Streett(1)][streett1] specifications (known as [GR(1)][gr1])
  - generalized Rabin(1) specifications ([counter-strategies][rabin1] to GR(1))
  - detection of trivial realizability in GR(1) specifications.

  See `omega.games.gr1` and the example `gr1_synthesis_intro`.


- Enumeration of state machines (as `networkx` graphs) from the synthesized
  symbolic implementations. See `omega.games.enumeration`.


- Facilities to simulate the resulting implementations with little and
  readable user code. See `omega.steps` and the example `moore_moore`.


- Code generation for the synthesized *symbolic* implementations.
  This code is correct-by-construction. See `omega.symbolic.codegen`.


- *Minimal covering* with a symbolic algorithm to find a minimal cover, and to
  enumerate all minimal covers. Used to convert BDDs to *minimal* formulas.
  See `omega.symbolic.cover` and `omega.symbolic.cover_enum`, and the
  example `minimal_formula_from_bdd`.


- [First-order][fol] [linear temporal logic][LTL] (LTL) with
  [rigid quantification][rigid quantification] and substitution.
  See `omega.logic.lexyacc`, `omega.logic.ast`, and `omega.logic.syntax`.


- [Bitblaster][bitblasting] of quantified integer arithmetic (integers -> bits).
  See `omega.logic.bitvector`.


- Translation from [past][past LTL] to future LTL, using
  [temporal testers][temporal testers]. See `omega.logic.past`.


- Symbolic automata that manage first-order formulas by seamlessly using
  [binary decision diagrams][bdd] (BDDs) underneath. You can:

  - declare variables and constants
  - translate:
    1. formulas to BDDs and
    2. BDDs to *minimal* formulas via minimal covering
  - quantify
  - substitute
  - prime/unprime variables
  - get the support of predicates
  - pick satisfying assignments (or work with iterators)
  - define operators

  See `omega.symbolic.temporal` and `omega.symbolic.fol` for more details.


- Facilities to write symbolic fixpoint algorithms.
  See `omega.symbolic.fixpoint` and `omega.symbolic.prime`, and the example
  `reachability_solver`.


- Conversion from graphs annotated with formulas to temporal logic formulas.
  These graphs can help specify transition relations.
  The translation is in the spirit of
  [predicate-action diagrams][tla-in-pictures].

  See `omega.symbolic.logicizer` and `omega.automata` for more details, and
  the example `symbolic`.


- Enumeration and plotting of state predicates and actions represented as BDDs.
  See `omega.symbolic.enumeration`.


Documentation
=============

In  [`doc/doc.md`][doc].


Examples
========

```python
import omega.symbolic.fol as _fol

ctx = _fol.Context()
ctx.declare(
    x=(0, 10),
    y=(-2, 5),
    z='bool')
u = ctx.add_expr(
    r'(x <= 2) /\ (y >= -1)')
v = ctx.add_expr(
    r'(y <= 3) => (x > 7)')
r = u & ~ v
expr = ctx.to_expr(r)
print(expr)
```


Installation
============

```
pip install omega
```

The package and its dependencies are pure Python.

For solving demanding games, install the [Cython][cython] module `dd.cudd`
that interfaces to [CUDD][cudd].
Instructions are available [at `dd`][dd].


License
=======
[BSD-3][bsd3], see `LICENSE` file.


[specs]: https://lamport.azurewebsites.net/tla/book-02-08-08.pdf
[synthesis]: https://doi.org/10.1007/BFb0035748
[moore]: https://web.archive.org/web/20120216141113/http://people.mokk.bme.hu/~kornai/termeszetes/moore_1956.pdf
[mealy]: https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
[streett1]: https://doi.org/10.1016/j.ic.2005.01.006
[gr1]: https://doi.org/10.1007/11609773_24
[rabin1]: https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=47554
[fol]: https://en.wikipedia.org/wiki/First-order_logic
[past LTL]: https://doi.org/10.1007/3-540-15648-8_16
[LTL]: https://doi.org/10.1109/SFCS.1977.32
[temporal testers]: https://doi.org/10.1007/978-3-540-69850-0_11
[rigid quantification]: https://doi.org/10.1007/978-1-4612-4222-2
[bitblasting]: https://doi.org/10.1007/978-3-540-74105-3
[bdd]: https://doi.org/10.1109/TC.1986.1676819
[tla-in-pictures]: https://doi.org/10.1109/32.464544
[doc]: https://github.com/tulip-control/omega/blob/main/doc/doc.md
[cython]: https://en.wikipedia.org/wiki/Cython
[cudd]: http://vlsi.colorado.edu/~fabio/CUDD
[dd]: https://github.com/tulip-control/dd#cython-bindings
[bsd3]: https://opensource.org/licenses/BSD-3-Clause

[build_img]: https://github.com/tulip-control/omega/actions/workflows/main.yml/badge.svg?branch=main
[ci]: https://github.com/tulip-control/omega/actions

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/tulip-control/omega",
    "name": "omega",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": "",
    "keywords": "first-order,propositional,logic,quantifier,forall,exists,fixpoint,mu-calculus,formula,flatten,bitblaster,bitvector,arithmetic,binary decision diagram,symbolic,games,specification,system,assume,guarantee,satisfiability,enumeration,state machine,transition system,automaton,automata,streett,rabin,temporal logic,temporal tester,gr1,generalized reactivity",
    "author": "Caltech Control and Dynamical Systems",
    "author_email": "tulip@tulip-control.org",
    "download_url": "https://files.pythonhosted.org/packages/14/4e/00f0acb52430c9f04ad526466925d58ba489ae0c9628186e291a5d11cc83/omega-0.4.0.tar.gz",
    "platform": null,
    "description": "[![Build Status][build_img]][ci]\n\n\nAbout\n=====\n\nA package of symbolic algorithms using binary decision diagrams (BDDs)\nfor synthesizing implementations from [temporal logic specifications][specs].\nThis is useful for designing systems, especially vehicles that carry humans.\n\n\n- [Synthesis][synthesis] algorithms for [Moore][moore] or [Mealy][mealy]\n  implementations of:\n\n  - [generalized Streett(1)][streett1] specifications (known as [GR(1)][gr1])\n  - generalized Rabin(1) specifications ([counter-strategies][rabin1] to GR(1))\n  - detection of trivial realizability in GR(1) specifications.\n\n  See `omega.games.gr1` and the example `gr1_synthesis_intro`.\n\n\n- Enumeration of state machines (as `networkx` graphs) from the synthesized\n  symbolic implementations. See `omega.games.enumeration`.\n\n\n- Facilities to simulate the resulting implementations with little and\n  readable user code. See `omega.steps` and the example `moore_moore`.\n\n\n- Code generation for the synthesized *symbolic* implementations.\n  This code is correct-by-construction. See `omega.symbolic.codegen`.\n\n\n- *Minimal covering* with a symbolic algorithm to find a minimal cover, and to\n  enumerate all minimal covers. Used to convert BDDs to *minimal* formulas.\n  See `omega.symbolic.cover` and `omega.symbolic.cover_enum`, and the\n  example `minimal_formula_from_bdd`.\n\n\n- [First-order][fol] [linear temporal logic][LTL] (LTL) with\n  [rigid quantification][rigid quantification] and substitution.\n  See `omega.logic.lexyacc`, `omega.logic.ast`, and `omega.logic.syntax`.\n\n\n- [Bitblaster][bitblasting] of quantified integer arithmetic (integers -> bits).\n  See `omega.logic.bitvector`.\n\n\n- Translation from [past][past LTL] to future LTL, using\n  [temporal testers][temporal testers]. See `omega.logic.past`.\n\n\n- Symbolic automata that manage first-order formulas by seamlessly using\n  [binary decision diagrams][bdd] (BDDs) underneath. You can:\n\n  - declare variables and constants\n  - translate:\n    1. formulas to BDDs and\n    2. BDDs to *minimal* formulas via minimal covering\n  - quantify\n  - substitute\n  - prime/unprime variables\n  - get the support of predicates\n  - pick satisfying assignments (or work with iterators)\n  - define operators\n\n  See `omega.symbolic.temporal` and `omega.symbolic.fol` for more details.\n\n\n- Facilities to write symbolic fixpoint algorithms.\n  See `omega.symbolic.fixpoint` and `omega.symbolic.prime`, and the example\n  `reachability_solver`.\n\n\n- Conversion from graphs annotated with formulas to temporal logic formulas.\n  These graphs can help specify transition relations.\n  The translation is in the spirit of\n  [predicate-action diagrams][tla-in-pictures].\n\n  See `omega.symbolic.logicizer` and `omega.automata` for more details, and\n  the example `symbolic`.\n\n\n- Enumeration and plotting of state predicates and actions represented as BDDs.\n  See `omega.symbolic.enumeration`.\n\n\nDocumentation\n=============\n\nIn  [`doc/doc.md`][doc].\n\n\nExamples\n========\n\n```python\nimport omega.symbolic.fol as _fol\n\nctx = _fol.Context()\nctx.declare(\n    x=(0, 10),\n    y=(-2, 5),\n    z='bool')\nu = ctx.add_expr(\n    r'(x <= 2) /\\ (y >= -1)')\nv = ctx.add_expr(\n    r'(y <= 3) => (x > 7)')\nr = u & ~ v\nexpr = ctx.to_expr(r)\nprint(expr)\n```\n\n\nInstallation\n============\n\n```\npip install omega\n```\n\nThe package and its dependencies are pure Python.\n\nFor solving demanding games, install the [Cython][cython] module `dd.cudd`\nthat interfaces to [CUDD][cudd].\nInstructions are available [at `dd`][dd].\n\n\nLicense\n=======\n[BSD-3][bsd3], see `LICENSE` file.\n\n\n[specs]: https://lamport.azurewebsites.net/tla/book-02-08-08.pdf\n[synthesis]: https://doi.org/10.1007/BFb0035748\n[moore]: https://web.archive.org/web/20120216141113/http://people.mokk.bme.hu/~kornai/termeszetes/moore_1956.pdf\n[mealy]: https://doi.org/10.1002/j.1538-7305.1955.tb03788.x\n[streett1]: https://doi.org/10.1016/j.ic.2005.01.006\n[gr1]: https://doi.org/10.1007/11609773_24\n[rabin1]: https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=47554\n[fol]: https://en.wikipedia.org/wiki/First-order_logic\n[past LTL]: https://doi.org/10.1007/3-540-15648-8_16\n[LTL]: https://doi.org/10.1109/SFCS.1977.32\n[temporal testers]: https://doi.org/10.1007/978-3-540-69850-0_11\n[rigid quantification]: https://doi.org/10.1007/978-1-4612-4222-2\n[bitblasting]: https://doi.org/10.1007/978-3-540-74105-3\n[bdd]: https://doi.org/10.1109/TC.1986.1676819\n[tla-in-pictures]: https://doi.org/10.1109/32.464544\n[doc]: https://github.com/tulip-control/omega/blob/main/doc/doc.md\n[cython]: https://en.wikipedia.org/wiki/Cython\n[cudd]: http://vlsi.colorado.edu/~fabio/CUDD\n[dd]: https://github.com/tulip-control/dd#cython-bindings\n[bsd3]: https://opensource.org/licenses/BSD-3-Clause\n\n[build_img]: https://github.com/tulip-control/omega/actions/workflows/main.yml/badge.svg?branch=main\n[ci]: https://github.com/tulip-control/omega/actions\n",
    "bugtrack_url": null,
    "license": "BSD",
    "summary": "Symbolic algorithms for solving games of infinite duration.",
    "version": "0.4.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/tulip-control/omega/issues",
        "Documentation": "https://github.com/tulip-control/omega/blob/main/doc/doc.md",
        "Homepage": "https://github.com/tulip-control/omega",
        "Source Code": "https://github.com/tulip-control/omega"
    },
    "split_keywords": [
        "first-order",
        "propositional",
        "logic",
        "quantifier",
        "forall",
        "exists",
        "fixpoint",
        "mu-calculus",
        "formula",
        "flatten",
        "bitblaster",
        "bitvector",
        "arithmetic",
        "binary decision diagram",
        "symbolic",
        "games",
        "specification",
        "system",
        "assume",
        "guarantee",
        "satisfiability",
        "enumeration",
        "state machine",
        "transition system",
        "automaton",
        "automata",
        "streett",
        "rabin",
        "temporal logic",
        "temporal tester",
        "gr1",
        "generalized reactivity"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "144e00f0acb52430c9f04ad526466925d58ba489ae0c9628186e291a5d11cc83",
                "md5": "bdb10473e4b8740a1362d97697f7dcb0",
                "sha256": "c705a0d1618e20bd233dbd35e1ab0800c62a42f1b5b9be70af44fae1cd79723f"
            },
            "downloads": -1,
            "filename": "omega-0.4.0.tar.gz",
            "has_sig": false,
            "md5_digest": "bdb10473e4b8740a1362d97697f7dcb0",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11",
            "size": 208972,
            "upload_time": "2024-02-16T15:25:15",
            "upload_time_iso_8601": "2024-02-16T15:25:15.627515Z",
            "url": "https://files.pythonhosted.org/packages/14/4e/00f0acb52430c9f04ad526466925d58ba489ae0c9628186e291a5d11cc83/omega-0.4.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-16 15:25:15",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "tulip-control",
    "github_project": "omega",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "omega"
}
        
Elapsed time: 0.18260s