# omero2pandas
A convenience package to download data from OMERO.tables into Pandas dataframes.
# Installation
omero2pandas can be installed with pip on Python 3.6+:
```
pip install omero2pandas
```
omero2pandas also supports authentication using tokens generated by `omero-user-token`.
Compatible versions can be installed as follows:
```
pip install omero2pandas[token]
```
See the [omero-user-token documentation](https://github.com/glencoesoftware/omero-user-token) for more information.
# Usage
```python
import omero2pandas
df = omero2pandas.read_table(file_id=402)
df.head()
```
Tables can be referenced based on their OriginalFile's ID or their Annotation's ID.
These can be easily obtained by hovering over the relevant table in OMERO.web, which shows a tooltip with these IDs.
To avoid loading data directly into a dataframe, you can also download directly into a CSV:
```python
import omero2pandas
omero2pandas.download_table("/path/to/output.csv", file_id=2, chunk_size=1000)
```
`chunk_size` can be specified when both reading and downloading tables. It determines
how many rows are loaded from the server in a single operation.
### Supplying credentials
Multiple modes of connecting to OMERO are supported. If you're already familiar with omero-py, you can supply a premade client:
```python
import omero
import omero2pandas
my_client = omero.client(host="myserver", port=4064)
df = omero2pandas.read_table(file_id=402, omero_connector=my_client)
df.head()
```
Alternatively, your connection and login details can be provided via arguments:
```python
import omero2pandas
df = omero2pandas.read_table(file_id=402, server="omero.mysite.com", port=4064,
username="myuser", password="mypass")
df.head()
```
If you have `omero_user_token` installed, an existing token will be automatically detected and used to connect:
```python
import omero2pandas
df = omero2pandas.read_table(file_id=402)
df.head()
```
You can also generate the connection object separately using the built-in wrapper:
```python
import omero2pandas
connector = omero2pandas.connect_to_omero(server="myserver", port=4064)
# User will be prompted for any missing connection info.
df = omero2pandas.read_table(file_id=402, omero_connector=connector)
df.head()
```
When prompting for missing connection information, the package automatically detects whether
omero2pandas is running in a Jupyter environment. If so, you'll get a login widget to complete details.
Otherwise a CLI interface will be provided.
This behaviour can be disabled by supplying `interactive=False` to the connect call.
### Reading data
Several utility methods are provided for working with OMERO.tables. These all support the full range of connection modes.
Fetch the names of the columns in a table:
```python
import omero2pandas
columns = omero2pandas.get_table_columns(annotation_id=142)
# Returns a list of column names
```
Fetch the dimensions of a table:
```python
import omero2pandas
num_rows, num_cols = omero2pandas.get_table_size(annotation_id=12)
# Returns a tuple containing row and column count.
```
You can read out specific rows and/or columns
```python
import omero2pandas
my_dataframe = omero2pandas.read_table(file_id=10,
column_names=['object', 'intensity'],
rows=range(0, 100, 10))
my_dataframe.head()
# Returns object and intensity columns for every 10th row in the table
```
Returned dataframes also come with a pandas index column, representing the original row numbers from the OMERO.table.
### Writing data
Pandas dataframes can also be written back as new OMERO.tables.
N.b. It is currently not possible to modify a table on the server.
Connection handling works just as it does with downloading, you can
provide credentials, a token or a connection object.
To upload data, the user needs to specify which OMERO object the table
will be associated with. To do this, the third and fourth arguments
should be the object ID and object type. Supported objects are Dataset,
Well, Plate and Image.
```python
import pandas
import omero2pandas
my_data = pandas.read_csv("/path/to/my_data.csv")
ann_id = omero2pandas.upload_table(my_data, "Name for table", 142, "Image")
# Returns the annotation ID of the uploaded file object
```
Once uploaded, the table will be accessible on OMERO.web under the file
annotations panel of the parent object. Using unique table names is advised.
# Advanced Usage
This package also contains utility functions for managing an OMERO connection.
`omero2pandas.connect_to_omero()` takes many of the arguments from the other functions and returns an `OMEROConnection` object.
The `OMEROConnection` handles your OMERO login and session, cleaning everything up automatically on exit. This has some accessory methods to access useful API calls:
```python
import omero2pandas
connector = omero2pandas.OMEROConnection()
connector.connect()
client = connector.get_client()
blitz = connector.get_gateway()
```
When a client is active within the `OMEROConnection` object, calls to this wrapper class will also be forwarded directly to the client object.
OMEROConnection objects can also be used as a context manager:
```python
import omero2pandas
with omero2pandas.OMEROConnection(server='my.server', port=4064,
username='test.user',) as connector:
blitz = connector.get_gateway()
image = blitz.getObject('Image', id=100)
# Continue using the standard OMERO API.
```
The context manager will handle session creation and cleanup automatically.
Raw data
{
"_id": null,
"home_page": "https://github.com/glencoesoftware/omero2pandas",
"name": "omero2pandas",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": "",
"keywords": "",
"author": "Glencoe Software, Inc.",
"author_email": "info@glencoesoftware.com",
"download_url": "https://files.pythonhosted.org/packages/8c/ae/10a657a5a899af81cfb126aadfa3edf6f69735f5b79349c55205a29e296a/omero2pandas-0.1.2.tar.gz",
"platform": "any",
"description": "# omero2pandas\n\nA convenience package to download data from OMERO.tables into Pandas dataframes.\n\n# Installation\n\nomero2pandas can be installed with pip on Python 3.6+:\n```\npip install omero2pandas\n```\nomero2pandas also supports authentication using tokens generated by `omero-user-token`. \nCompatible versions can be installed as follows:\n```\npip install omero2pandas[token]\n```\nSee the [omero-user-token documentation](https://github.com/glencoesoftware/omero-user-token) for more information.\n\n\n# Usage\n\n```python\nimport omero2pandas\ndf = omero2pandas.read_table(file_id=402)\ndf.head()\n```\n\nTables can be referenced based on their OriginalFile's ID or their Annotation's ID. \nThese can be easily obtained by hovering over the relevant table in OMERO.web, which shows a tooltip with these IDs.\n\nTo avoid loading data directly into a dataframe, you can also download directly into a CSV:\n\n```python\nimport omero2pandas\nomero2pandas.download_table(\"/path/to/output.csv\", file_id=2, chunk_size=1000)\n```\n\n`chunk_size` can be specified when both reading and downloading tables. It determines \nhow many rows are loaded from the server in a single operation.\n\n### Supplying credentials\n\nMultiple modes of connecting to OMERO are supported. If you're already familiar with omero-py, you can supply a premade client:\n\n```python\nimport omero\nimport omero2pandas\nmy_client = omero.client(host=\"myserver\", port=4064)\ndf = omero2pandas.read_table(file_id=402, omero_connector=my_client)\ndf.head()\n```\n\nAlternatively, your connection and login details can be provided via arguments:\n\n```python\nimport omero2pandas\ndf = omero2pandas.read_table(file_id=402, server=\"omero.mysite.com\", port=4064,\n username=\"myuser\", password=\"mypass\")\ndf.head()\n```\n\nIf you have `omero_user_token` installed, an existing token will be automatically detected and used to connect:\n\n```python\nimport omero2pandas\ndf = omero2pandas.read_table(file_id=402)\ndf.head()\n```\n\nYou can also generate the connection object separately using the built-in wrapper:\n```python\nimport omero2pandas\nconnector = omero2pandas.connect_to_omero(server=\"myserver\", port=4064)\n# User will be prompted for any missing connection info. \n\ndf = omero2pandas.read_table(file_id=402, omero_connector=connector)\ndf.head()\n```\n\nWhen prompting for missing connection information, the package automatically detects whether \nomero2pandas is running in a Jupyter environment. If so, you'll get a login widget to complete details.\nOtherwise a CLI interface will be provided.\n\nThis behaviour can be disabled by supplying `interactive=False` to the connect call.\n\n### Reading data\n\nSeveral utility methods are provided for working with OMERO.tables. These all support the full range of connection modes.\n\nFetch the names of the columns in a table:\n```python\nimport omero2pandas\ncolumns = omero2pandas.get_table_columns(annotation_id=142)\n# Returns a list of column names\n```\n\nFetch the dimensions of a table:\n```python\nimport omero2pandas\nnum_rows, num_cols = omero2pandas.get_table_size(annotation_id=12)\n# Returns a tuple containing row and column count.\n```\n\n\nYou can read out specific rows and/or columns\n```python\nimport omero2pandas\nmy_dataframe = omero2pandas.read_table(file_id=10, \n column_names=['object', 'intensity'],\n rows=range(0, 100, 10))\nmy_dataframe.head()\n# Returns object and intensity columns for every 10th row in the table\n```\n\nReturned dataframes also come with a pandas index column, representing the original row numbers from the OMERO.table.\n\n### Writing data\n\nPandas dataframes can also be written back as new OMERO.tables.\nN.b. It is currently not possible to modify a table on the server.\n\nConnection handling works just as it does with downloading, you can \nprovide credentials, a token or a connection object.\n\nTo upload data, the user needs to specify which OMERO object the table\nwill be associated with. To do this, the third and fourth arguments \nshould be the object ID and object type. Supported objects are Dataset, \nWell, Plate and Image.\n\n```python\nimport pandas\nimport omero2pandas\nmy_data = pandas.read_csv(\"/path/to/my_data.csv\")\nann_id = omero2pandas.upload_table(my_data, \"Name for table\", 142, \"Image\")\n# Returns the annotation ID of the uploaded file object\n```\n\nOnce uploaded, the table will be accessible on OMERO.web under the file \nannotations panel of the parent object. Using unique table names is advised.\n\n# Advanced Usage\n\nThis package also contains utility functions for managing an OMERO connection.\n\n`omero2pandas.connect_to_omero()` takes many of the arguments from the other functions and returns an `OMEROConnection` object.\n\nThe `OMEROConnection` handles your OMERO login and session, cleaning everything up automatically on exit. This has some accessory methods to access useful API calls:\n\n```python\nimport omero2pandas\nconnector = omero2pandas.OMEROConnection()\nconnector.connect()\nclient = connector.get_client()\nblitz = connector.get_gateway()\n```\nWhen a client is active within the `OMEROConnection` object, calls to this wrapper class will also be forwarded directly to the client object.\n\nOMEROConnection objects can also be used as a context manager:\n```python\nimport omero2pandas\nwith omero2pandas.OMEROConnection(server='my.server', port=4064, \n username='test.user',) as connector:\n blitz = connector.get_gateway()\n image = blitz.getObject('Image', id=100)\n # Continue using the standard OMERO API.\n```\n\nThe context manager will handle session creation and cleanup automatically.\n",
"bugtrack_url": null,
"license": "",
"summary": "OMERO.tables to pandas bridge",
"version": "0.1.2",
"project_urls": {
"Homepage": "https://github.com/glencoesoftware/omero2pandas"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "8183743f130d25183f39ee9e4482212679f28a4df9c59bc8ccfe56092232462e",
"md5": "859cccdc37d203bb4f4c9df3c854cbbd",
"sha256": "9976025e5f1d9a4eda30f90fac6bd163bcd7513abcce99fe55be80017d046adb"
},
"downloads": -1,
"filename": "omero2pandas-0.1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "859cccdc37d203bb4f4c9df3c854cbbd",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 24605,
"upload_time": "2023-05-11T13:26:09",
"upload_time_iso_8601": "2023-05-11T13:26:09.322944Z",
"url": "https://files.pythonhosted.org/packages/81/83/743f130d25183f39ee9e4482212679f28a4df9c59bc8ccfe56092232462e/omero2pandas-0.1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "8cae10a657a5a899af81cfb126aadfa3edf6f69735f5b79349c55205a29e296a",
"md5": "f1c75a1f6d585e005dba4ca783c6e665",
"sha256": "db81b5e2d9337557b7da6de749f90d92fc064a9715266498f62dc21222c26759"
},
"downloads": -1,
"filename": "omero2pandas-0.1.2.tar.gz",
"has_sig": false,
"md5_digest": "f1c75a1f6d585e005dba4ca783c6e665",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 24667,
"upload_time": "2023-05-11T13:26:11",
"upload_time_iso_8601": "2023-05-11T13:26:11.237800Z",
"url": "https://files.pythonhosted.org/packages/8c/ae/10a657a5a899af81cfb126aadfa3edf6f69735f5b79349c55205a29e296a/omero2pandas-0.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-05-11 13:26:11",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "glencoesoftware",
"github_project": "omero2pandas",
"github_fetch_exception": true,
"lcname": "omero2pandas"
}