==========
OmniVector
==========
.. image:: https://img.shields.io/pypi/v/omnivector.svg
:target: https://pypi.python.org/pypi/omnivector
.. image:: https://img.shields.io/travis/vinid/omnivector.svg
:target: https://travis-ci.com/vinid/omnivector
.. image:: https://readthedocs.org/projects/omnivector/badge/?version=latest
:target: https://omnivector.readthedocs.io/en/latest/?version=latest
:alt: Documentation Status
OmniVector provides a simple interface to vector databases. We integrate the main functionalities of different vector dbs,
generally indexing and searching, into a single interface. This allows us to easily switch between different vector dbs.
.. code-block:: python
db = WeaviateDB() # or PineconeDB() or LanceDB()
encoder = SentenceTransformerEmbedder("paraphrase-MiniLM-L6-v2", device="cpu")
docs = ["the cat is on the table", "the table is on the cat", "the dog is mining bitcoins"]
ids = list(range(4, len(docs) + 4))
embeddings = encoder.embed(docs)
db.create_index(ids, docs, embeddings)
search_vector = encoder.embed(["the dog is mining bitcoins"])[0]
print(db.vector_search(search_vector, k=1))
* Free software: MIT license
* Documentation: https://omnivector.readthedocs.io.
Features
--------
* The AbstractDB requires setting OMNIVECTOR_CONFIG env variable to a config file (an example is in config.yaml)
Credits
-------
This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.
.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage
Raw data
{
"_id": null,
"home_page": "https://github.com/vinid/omnivector",
"name": "omnivector",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": "",
"keywords": "omnivector",
"author": "Audrey Roy Greenfeld",
"author_email": "audreyr@example.com",
"download_url": "https://files.pythonhosted.org/packages/d6/e4/8810cf87eadd6e12c52d98ddcd628ce497311fcfcc92338e895cfc1f88be/omnivector-0.1.1.tar.gz",
"platform": null,
"description": "==========\nOmniVector\n==========\n\n\n.. image:: https://img.shields.io/pypi/v/omnivector.svg\n :target: https://pypi.python.org/pypi/omnivector\n\n.. image:: https://img.shields.io/travis/vinid/omnivector.svg\n :target: https://travis-ci.com/vinid/omnivector\n\n.. image:: https://readthedocs.org/projects/omnivector/badge/?version=latest\n :target: https://omnivector.readthedocs.io/en/latest/?version=latest\n :alt: Documentation Status\n\n\n\n\nOmniVector provides a simple interface to vector databases. We integrate the main functionalities of different vector dbs,\ngenerally indexing and searching, into a single interface. This allows us to easily switch between different vector dbs.\n\n\n.. code-block:: python\n\n db = WeaviateDB() # or PineconeDB() or LanceDB()\n\n encoder = SentenceTransformerEmbedder(\"paraphrase-MiniLM-L6-v2\", device=\"cpu\")\n docs = [\"the cat is on the table\", \"the table is on the cat\", \"the dog is mining bitcoins\"]\n\n\n ids = list(range(4, len(docs) + 4))\n embeddings = encoder.embed(docs)\n\n db.create_index(ids, docs, embeddings)\n\n search_vector = encoder.embed([\"the dog is mining bitcoins\"])[0]\n print(db.vector_search(search_vector, k=1))\n\n* Free software: MIT license\n* Documentation: https://omnivector.readthedocs.io.\n\n\nFeatures\n--------\n\n* The AbstractDB requires setting OMNIVECTOR_CONFIG env variable to a config file (an example is in config.yaml)\n\nCredits\n-------\n\nThis package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.\n\n.. _Cookiecutter: https://github.com/audreyr/cookiecutter\n.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage\n",
"bugtrack_url": null,
"license": "MIT license",
"summary": ".",
"version": "0.1.1",
"project_urls": {
"Homepage": "https://github.com/vinid/omnivector"
},
"split_keywords": [
"omnivector"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "da6a196258004cab303ed5a3fe010457e03c687e4c98b6a108a4cd608edb8cff",
"md5": "78349654a9f81edeaa1fffc28b6fb3ba",
"sha256": "0920abbe959b5d0a6e43d8e5df9bdcd18f594a712e577c4a9946c183856734e9"
},
"downloads": -1,
"filename": "omnivector-0.1.1-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "78349654a9f81edeaa1fffc28b6fb3ba",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": ">=3.6",
"size": 7169,
"upload_time": "2023-10-23T22:54:47",
"upload_time_iso_8601": "2023-10-23T22:54:47.784042Z",
"url": "https://files.pythonhosted.org/packages/da/6a/196258004cab303ed5a3fe010457e03c687e4c98b6a108a4cd608edb8cff/omnivector-0.1.1-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d6e48810cf87eadd6e12c52d98ddcd628ce497311fcfcc92338e895cfc1f88be",
"md5": "876367ba1d004208e5113d531b1a018c",
"sha256": "4fe78eccd50e0dccf46238d199a34d7e97fb36020b2d63d86ada6a64425d50b7"
},
"downloads": -1,
"filename": "omnivector-0.1.1.tar.gz",
"has_sig": false,
"md5_digest": "876367ba1d004208e5113d531b1a018c",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 5848,
"upload_time": "2023-10-23T22:54:49",
"upload_time_iso_8601": "2023-10-23T22:54:49.409990Z",
"url": "https://files.pythonhosted.org/packages/d6/e4/8810cf87eadd6e12c52d98ddcd628ce497311fcfcc92338e895cfc1f88be/omnivector-0.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-10-23 22:54:49",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "vinid",
"github_project": "omnivector",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "omnivector"
}