Intel® oneAPI Math Kernel Library (Intel® oneMKL) is a computing math library of highly optimized, extensively threaded routines for applications that require maximum performance. This package provides C and Data Parallel C++ (DPC++) programming language interfaces. Intel MKL C language interfaces can be called from applications written in either C or C++, as well as in any other language that can reference a C interface. Use it to optimize code for current and future generations of Intel® CPUs and GPUs.
Raw data
{
"_id": null,
"home_page": "https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html",
"name": "onemkl-sycl-blas",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "Intel Corporation",
"author_email": "scripting@intel.com",
"download_url": null,
"platform": null,
"description": "Intel\u00ae oneAPI Math Kernel Library (Intel\u00ae oneMKL) is a computing math library of highly optimized, extensively threaded routines for applications that require maximum performance. This package provides C and Data Parallel C++ (DPC++) programming language interfaces. Intel MKL C language interfaces can be called from applications written in either C or C++, as well as in any other language that can reference a C interface. Use it to optimize code for current and future generations of Intel\u00ae CPUs and GPUs.\r\n\r\n",
"bugtrack_url": null,
"license": "Intel Simplified Software License",
"summary": "Intel\u00ae oneAPI Math Kernel Library",
"version": "2025.0.1",
"project_urls": {
"Homepage": "https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "6e01d077b7f3db6f8775d4947c0a06ded56c9051caf6d9a74a6a2ca81c15fa13",
"md5": "6325069901332ad95de51b062cbdecf0",
"sha256": "b45072f2289bf353a135d7bc6eadbc295794b143c8e942bef3542c3420ebd590"
},
"downloads": -1,
"filename": "onemkl_sycl_blas-2025.0.1-py2.py3-none-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "6325069901332ad95de51b062cbdecf0",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": null,
"size": 22087640,
"upload_time": "2024-11-19T15:38:58",
"upload_time_iso_8601": "2024-11-19T15:38:58.118671Z",
"url": "https://files.pythonhosted.org/packages/6e/01/d077b7f3db6f8775d4947c0a06ded56c9051caf6d9a74a6a2ca81c15fa13/onemkl_sycl_blas-2025.0.1-py2.py3-none-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "85f092ce0dcffe9462c7f6965ecc1ec1462b748e4df1d9d6cca0af3d844709c6",
"md5": "c94c46881079ef541ded83d6b6010ee3",
"sha256": "4c0c49e8e378f7a2db39510f8c8215a375713d59fdfd7af390b26bfbe9641f83"
},
"downloads": -1,
"filename": "onemkl_sycl_blas-2025.0.1-py2.py3-none-win_amd64.whl",
"has_sig": false,
"md5_digest": "c94c46881079ef541ded83d6b6010ee3",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": null,
"size": 17033895,
"upload_time": "2024-11-19T15:37:33",
"upload_time_iso_8601": "2024-11-19T15:37:33.302254Z",
"url": "https://files.pythonhosted.org/packages/85/f0/92ce0dcffe9462c7f6965ecc1ec1462b748e4df1d9d6cca0af3d844709c6/onemkl_sycl_blas-2025.0.1-py2.py3-none-win_amd64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-19 15:38:58",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "onemkl-sycl-blas"
}